

> o 3 C3ATLE T Mitchel|
C][:S(N j[Z_éll!. ;ot%/u/ﬂ -o°tM ~ oM & o

Note that an aid sheet will not be provided with the final exam. More obscure Java syntax details will be
provided with the problem statement, if needed.

e Java Fundamentals
o Primitive types, variable declaration and initialization, expressions, conditionals, loops. v~
o Type casting of primitive types and objects. ~/ ?f]
o Screen (or "console") output using System.out.printin() and System.out.printf().
Screen input using the Scanner class.
Arrays - single and multi-dimensional.
The ArrayList<T> class.
Aliasing objects.
Strings (String method signatures will be provided, if required).
StringTokenizers
Wrapper classes (Wrapper class method signatures will be provided, if required).
Enumerated types or enum's.
Importing packages.
Packages and use of static import.
Use of modules in Java.
Methods - use and declaration.
Passing parameters by value and by reference.
Object instantiation.
Use of instanceof, this, super, static, final, public, private, protected, extends and implements keywords.
Method refining, overloading and overriding.
File I/O (As in Exercise 5).
The File class (As in Exercise 5).
Lambda functions and method references.

o

o0 0O O O o o o

0O 0O 0O 0O 0O 0O 0 O ©o

e OOP in Java
o Definition of a class, an object (instance), instance variables or attributes, static variables and static methods
o Encapsulation or "Information Hiding"
= Constructors.
= Mutators, accessors.
= Other methods - equals(), compareTo(), clone(), and toString().
Constructing an Object Hierarchy
Inheritance
Inner or nested classes.
Anonymous classes.
Abstract classes.
Interfaces. (Including changes made in Java versions 8 and 9.)
Polymorphism or Dynamic Binding or Late Binding.
Generic classes.
The Class<T> Object.
Generic methods.
Generic wildcards.

0O 0O 0O 0O 0O 0O 0O 0O 0 O ©o

e Exceptions

Throwing.

Catching.

Writing your own Exception classes.
Try-with-resources structure (As in Exercise 5).

o

o o o

e GUI Design in Java
o Using JavaFX to build a simple window:
= All Panes except for TextFlow, StackPane, DialogPane and PopupControl.CSSBridge - how they work and what
layouts they provide.
= TextField, TextArea, Button, ChoiceBox, CheckBox, RadioButton and Label nodes.
= How to attach a listener/event combination to a node, including the use of a Lambda function. Responding to
a Mouse Click or a Change Event.

= A general understanding of the various files used to build a JavaFX GUI and what they are used for: *.java
files including the controller file and Main.java. Also *.css and *.fxml files.
o Interpret the essense of a GUI structure from either java construction code or fxml code.

e Other Topics

Numeric representation.

Source and Effects of Roundoff Error.
Summations and Increasing Their Accuracy.
Objects in General.

History of Java.

JUnit testing.

0O O O O o o

e Not on final. Several of these topics were discussed in previous offerings of this course, but not in the current offering.
o Use of whitespace and documentation in code.

Use of Eclipse, WindowBuilder Pro or SceneBuilder.

Javadoc tool.

Functional decomposition.

Class diagrams.

Debugging techniques and the use of the debugger in Eclipse.

Writing clean code.

Built-In JavaFX Dialogs.

JavaFX Nodes: ToggleButton, Slider, Spinner, Canvas and Progress Bars.

GUI "Look and Feels".

Building JFrame based windows using Swing and AWT.

CardLayout layout manager.

JOptionPane, JFileChooser, JColorChooser classes.

Swing Controls: JTextArea, JComboBox, JSpinner and JSlider Components

ImagelO

Graphics2D

Swing or JavaFX Animation

AffineTransform

Applets

BufferedImageOP

Java Web Start

Multi-threading using Timer and Thread classes.

The fork/join framework used to thread multi-core processes.

0O 0 0O 0O 0O 0O 0O 0OOOOOO OO O 0O 0 O o o o

Old CISC124 exams show quite a shift in topics! And, many of the older exams were open-book, where ours is not. Basically,
ignore anything to do with C++, UML diagrams and data structures. And, older exams are focussed on GUI construction using
JFrame and Swing, where this offering of the course is using JavaFX.

December 2017 Final and Solution
December 2016 Final and Solution
December 2015 Final and Solution
December 2014 Final and Solution
December 2013 Final and Solution
December 2012 Final and Solution
April 2012 Final and Solution

April 2011 Final and Solution

April 2010 Final and Solution

April 2009 Final and Solution

Dec 2007, Q1, Q4

Dec 2005, Q2 and Q4

Dec 2003, Q1, Q2 and Q3 (note the comprehensive aid sheets supplied with this exam!)
Apr 2004, Q5

Dec 2002, Q2 and Q5

Dec 2001, Q1 to Q6, Q9 to Q11

Don't use any older exams

Here are some old CISC212 exams that might be useful:

The 2007 final exam and its solution. Q3 to Q6

The 2006 final exam and its solution. Q3 and Q5

The 2005 final exam and its solution. Entire exam is good.
The 2004 final exam and its solution. Q2 to Q4

Work through the old exams first, without looking at the solutions. Time yourself.

Go over your quizzes and their solutions. Make sure you understand what you did wrong.

Go through the exercises. Examine assignment solutions, especially if you had problems with the assignment.
Make sure you can write code! If you can't write Java code by now, you will have problems on the final exam.
Be prepared to read code, write code, answer short answer questions and true/false questions.

Ask questions in an onQ forum while you are studying.

Any questions Emailed to the prof. may still end up (anonymously) in the forum.

Get a good sleep the night before!

Home)

Last modified: 12/01/2018 13:09:44

uq%;z | Rrey et l(‘

Notes for introduction

History of Java

e The language was first developed by James Gosling at Sun Microsystems in 1991
o He was designing a language, called “Oak”, for the “Green Project”
= — The Green Project envisaged the centralized control of many processor-based devices in the
home
= “QOak” was designed to be a robust, efficient language with maximum portability to different
processors
o The Green Project flopped
e In the early 90’s, Needed a robust, compact, multiplatform language, so let’s dust off Oak and call it
something racy like “Java”
¢ In 1994, Sun Microsystem demonstrated the use of Java in small bundles of code embedded in a web
page - called applets
¢ Netscape browsers started supporting applets in 1995, starting Java’s rise to fame
¢ Earlyin 2010 Oracle acquired Sun Microsystems.

How Java Works?

e A compiler (part of the “JDK”, or “Java Development Kit” — sometimes called javac.exe) which is
designed to run on your development platform, compiles your source code (*.java file) to a byte code
file (*.class file).

o The byte code file is platform-independent, and is the thing you would attach to your web page as
an applet
o Two components of the JDK are the programs “javac.exe” and “java.exe”.
= javac.exe is the byte code compiler, and java.exe is the JRE which executes the byte
code file.
= The java.exe program:
= accepts the byte code file
= links in any required libraries
= creates executable code in memory
= converts it to machine language
= sends it to the CPU.
o “Compilation” is the process of converting the *.java file to a *.class file (the byte code file).
This is done by calling javac.exe in the background, and supplying that program with all the
required command line parameters.

e Every browser written for every platform and OS, can have an embedded code processor called a JVM, or

“Java Virtual Machine”, built-in.

o The JVM takes the byte code and executes it by generating the machine code that will be

recognized by the platform that is running the browser
e JVM could run stand-alone Java applications. This is the JRE or “Java Runtime Engine” (java.exe).
e So, Java can be used either to create applets for use in web pages or for stand-alone applications.
e However applets have fallen out of favour in the last few years due to security concerns

Eclipse

oz

not
successful

javac.exe

binary

i
B
7

java.exe

Fall 2018 CISC124 - Prof. McLeod ‘—] 18

Class Structure

e A class or “object definition” or an “object”, consists of instance variables and/or methods
¢ By convention, instance variables are all declared before the methods

1 public class ShowStructure {

2 // instance variables or “attributes” here
3 // methods here

4 } // end class ShowStructure

In Java, a class is an Object, and an Object is a class

Code and attributes cannot be defined outside of a class

The only code that can exist outside a method are attributes or other (“inner”) class definitions
Attributes

1 [private|public] [static] [finall type attributeName [= literalValuel;
2 //ZXBR 1A RNoptionaldy

o Also called “class variables” or “instance variables” or “fields”
o Declared within a class at the same level as the method declarations, these variables are known to all
methods in the same class
o You can control their privacy and the way they are stored in memory
(using public/private/protected and static).
= public means the attribute or method is available to any external class (as well as
inside the class)
= private means that the attribute or method, the “member”, is only available inside the
class in which it is declared.

= protected means the member is only public to classes in the same package as the class

in which the member is declared
e static: static means different things depending on where it is used.
o public static members are available outside the class without the need to instantiate the class
o Any static member remains in memory until the program is complete
o Since main is static, it can only invoke other static methods when they are in the same
class
e type part is not optional — this is why java is a declarative language, And, a variable cannot change its
type later, called static typing, cannot use a variable unless you have declared it first.
e Variable Declaration
o Declaring a variable inside a method gives that variable the scope of just inside the method, not
outside the method

1 variabletype variablename = value;

e Method Declaration

1 [private|public] [static] [finall returnType methodName ([parameterList]) {..}

o The returnType can be any single Object or a primitive type, # R 4 # A fHreturnf)ig > IRELAE
returnType#f B 5 Fvoid

1 public static void main (String[] args) {..} //declaration for main

o starting point of the whole program is always the execution of the main method

o Each parameter type must be declared in the parameter list, as in type parameterName,
type parameterName, ...

o Unless the return type is void, the method must contain at least one return statementytmethod ¥ [fj
i, The type of “literal |expression” must match the return type specified in the method declaration

statement.
Primitive Types

e Everything else in Java is an Object, A variable declared as one of the types shown below is not an Object

char
byte
short
int
long
float
double
boolean

e Integer Primitive Types
o byte, short, int, long

[e]

For byte, from -128 to 127, inclusive (1 byte).

o

For short, from -32768 to 32767, inclusive (2 bytes).

[e]

For int, from -2147483648 to 2147483647, inclusive (4 bytes).
For long, from -9223372036854775808 to 9223372036854775807, inclusive (8 bytes).
A “byte” is 8 bits, where a “bit” is either 1 or o.
Real Primitive Types/“Floating Point” Types
o float, double
o For float, (4 bytes) roughly +1.4 x 10-38 to +3.4 x 1038 to 7 significant digits

o

o For double, (8 bytes) roughly +4.9 x 10-308 to +1.7 x 10308 to 15 significant digits

Character Primitive Type
o char
o From "\uoooo' to "\uffff' inclusive, that is, from o to 65535 (base 10) or o to ffff (base 16, or
“hexadecimal”). A variable of the char type represents a Unicode character. Can also be represented

as 'a' or '8', etc.

Boolean Primitive Type: true/false

String Objects
o String’s are not primitive data types, but are Objects

1 String example
2 //or
3 String example = new String("I am a string!");//This is called instantiation

"I am a string!";

e Array Declaration ‘9(

1 int[] data = new int[10];// XEEXT10i5HZ(RdeclarefiXarrayisize
2 //or

3 int[] data;

4 data = new int[10];

o mew is always involved with the instantiation of an Object.

o Arrays are Objects in Java

o Java array can only hold items of all the same type (even if they are objects)
o The size of a Java array must be declared and is then fixed

o In Javayou can only get at a single element at a time

1 int[] anArray = {1, 2, 3, 4}; // Array literal!
2 anArray[2] = 10; // Changes third element to 10

[e]

To get the size of an array, use the .length attribute

o

For example anArray.length would provide 4 for the array on the previous code

[e]

In Java, you cannot use pointers to access array elements, only the indices
o The first array element is at index zero

o HIBEBE LT IEL > AR5 A declare AT Atypel)iF > JavafB B 147 Aint

o TEHUTJETE M — ALk Al L fklong
= ex: 43 >>>43L
e Binary, Octal and Hex Literals
o Use the prefix ob (or 0oB) in front of the numbers to get a binary literal
o Octal — just use 0
o Hex use 0x
o HEBUgHE T — AN IBAJavaif XA /NS FAF R —~double » YE40 J5 I INFA] LLAE K float

e Java names may contain any number of letters, numbers and underscore (“_") characters, but they must

begin with a letter
e var

o var is not a Java keyword instead it is called a “reserved type name”

1 var aNum = 10;

o aNum will be of type int

o The type for the variable is inferred from the type of the literal value used to initialize the
variable

o var can reduce repetition in longer declarations

e Constant Attribute Declaration

1 [private|public] [static] final type ATTRIBUTE_NAME = literal_value; //constantfZF—EEKRE

o The Java keyword, final can be used to make sure a variable value is no longer “variable”.
o Usually these are declared public static
o Java will not allow your program to change a constant’s value once it has been declared

Type Casting X
¢ When a value of one type is stored into a variable of another type
e A value to the left can be assigned to a variable to the right without explicit casting

byte > short > int > long > float > double

o [RIAMZE R 5 A ZE TRDEBE S > BT DU—AS /N o 22 8] 21— A KA ok 22 6] A 7 238 Hy
o WIRAMSZITIH : int anotherVar = 345.892;
¢ the compiler would protest loudly because a double cannot be stored in an int variable without loss of

precision. Wrong direction!
o WIREAJREMELTT M EEHI TG > R ZEARUT HE £ X 45 < loss precision |
o int anotherVar = (int)345.892;
o The variable anotherVar would hold the value 345

Avithwmetic Oeration

Addi<onc)
4ol traction C-)
Binary arithwmetic oferators Maltiplication 4)
Division C/)
& Modulus (%) (AT = viT8iddn =2)

,ngﬂ)\ ‘“"“&,g\ Ml— wifng{,‘C orerHrtoys M 4@ ofetntol gé@ }z]/%{%g ﬁ?ﬁa’[bj;{}\fx
FAE

A8 inteqer UL R 3¢, FAHI LR FROR T intege

#% N5iR R mived W?mw e B T e Gsk B 5T Agre, FENSFEEH
F"’W?t JITVL L TRE it 2 4 dodle 2098, (L4838 3ce A doble 3, 2

% B2 634 5 R2ET ulle

1 {8 t A& Soing #10, WUHD Sring BAT Soriy

+It S DRRE Ma3lE
e P fostive
—2 Negut've
Aridh metic Oferators H =2 inchement , incrense +he number by |

-2 Jed‘QW‘e'/«-(, Jeckeu&e 'd\t Aumbe) b ‘

freincrement © +4¢ R 1‘-\2\1 ‘nckement +he voliable Leque s uled a <he exPress 'y

fuck tnctement | 1+t a Y ofHer Y%
Fedocreomant : -1, W deckement ~ bedove S
Tusk Jecrement . (- ° A agdter n

- e
A= mddidy oud cex eyl 4o
Ass“@nmev\—i O7erutors /= dhvide and get equal &o

- subtract cu\J ot qul 4o

= odd ol set quul +o
=
2
4
loJk.J Bimd D7eretors >=
A
& ond , olwags evolvates both gides :,4 de exjressiim
8 ond, cips when dhe loft sde) felse
' N, alwoy s ewluctes hoth e ;J de OPlesim
1 o, 5‘%?5 szu —\Lz 'ei‘i s\‘tle s 4hue
)”ﬁk«‘ oferutor * { , not
?recu)encc rules - UN:I—\\I Sferedors Costing
*) // (;o
4, -

£, 2, 2z, 7=

&, 8%, L,

= , #=, —\—:,_:,/:

v

#* Exression ove oombinations o;] vatiable, [ekal wlyes, pertors, Keywords, metho
Galls | e

* Fpvarde

Nam-'v\\tj the Maé\agl
}J\H’MJ iNVocartions '?WV!‘(JI‘AJ crguments < wst

Du;vw Cﬁma-ﬁbn'g w:—&ld +l'\e retukn Value s unst

Fall 2018 CISC124

9/17/2018

Method Invocations — 2. Providing
Arguments for the Parameters

+ |f the method has been declared to accept
arguments, je. it has a non-empty parameter list,
then you must supply a matching list of
arguments.

+ |f the method does not have any parameters, then
you must still use empty brackets, (), when you
invoke the method.

Fall 2018 CISC124 - Prof. McLeod 7

Method Invocations — 3. Using a Return
Value

* A non-void method will return something.

* You can use that “something” in an expression, or
just store it in a variable — your choice.

* The method has declared the type of that
“something”.

+ If the method was declared as void, you will not
get a return value and you can only invoke the
method by itself, not as part of an expression or
an assignment statement.

Fall 2018 CISC124 - Prof. McLeod 8

Method Invocations - Examples

+ See the MethodInvocations.java program.

Fall 2018 CISC124 - Prof. McLeod 9

Java Punctuation - Whitespace

» Multiple spaces are treated as one space.
* Leading and trailing spaces are ignored.
+ Tabs and empty lines (line feeds) are ignored.

* Line continuation:

— Long lines can be continued on the line below — break
the line anywhere there is a space, but not in the
middle of a string (!).

— For good style, indent the line to show it is a
continuation.

Fall 2018 CISC124 - Prof. McLeod 10

Java Punctuation, Cont.

» Comments: inline // ,block /* */

+ Comma, used in parameter lists and array
literals.

» Semi-colon ; used to end a statement and with
for loop syntax.

» Colon : used with switch statements and “for
each” loop.

* Period or “dot operator” . used with objects to
obtain members.

*Also[1,()and{ }

* And -> along with ::

Fall 2018 CISC124 - Prof. McLeod 11

Conditionals or “Selection Statements”

* We will consider if, if-else and switch
statements.

+ Simple if statement syntax:

* Example:

if (capacitance < 0)
System.out.println(“Illegal capacitance”);

Fall 2018 CISC124 - Prof. McLeod 12

Simde i;f So-tenm

Rt

Prof Alan MceT eod

Fall 2018 CISC124 9/17/2018

if-else Statement if-else Statement, Cont.

» Syntax of if-else statement: » With statement blocks:

* Example:

if (stress > maxStress / 1.5)

result = “failure”;
1 . . .
© ::sult = “pass”; Note indentation and bracket alignment for style.
Fall 2018 CISC124 - Prof. McLeod 13 Fall 2018 CISC124 - Prof. McLeod 14
Abbreviated if Statement ‘d(“Chained” if Statements
AOPNAAAAAAAAAAAATANA
+ Uses the “ternary operator” - ? . Syntax:

expressionl ? expression2 : expression3

e expressionl must evaluate to a boolean

» expression2 (when true) and expression3
(when false) must evaluate to the same type.

You could use this with an assignment, for
example:

int smaller = a <= b ? a : b; * Each condition is tested in turn, until one is
evaluated to true. If none of them are true then
the else block is executed.

Fall 2018 CISC124 - Prof. McLeod 15 Fall 2018 CISC124 - Prof. McLeod 16

« stores the smaller of the two numbers in smaller.

Dangling else Problem switch Statement

+ Syntax:

* Itis not unusual to nest if statements inside each
other.

» One issue that can arise is the “Dangling else”
problem.

» See DanglingElse.java

* Indentation might give a visual clue, but has no
syntactic meaning.

* The else should be associated with the closest if.
* Use {}if necessary.

Fall 2018 CISC124 - Prof. McLeod 17 Fall 2018 CISC124 - Prof. McLeod

Prof Alan MceT eod o}

Fall 2018 CISC124

9/17/2018

switch Statement - Cont.

* The code to be run depends on which val# value
matches expression.

* If none match, the statements after the default:
clause are run.

* The expression and val# values (or “Case
Labels”) must all be of the same integer (including
char) or String type.

* The break; statements make sure that following
cases are not executed after a match has been
made.

+ ltis possible to do multiple cases on one line, but
it is clumsy:

Fall 2018 CISC124 - Prof. McLeod 19

switch Statement - Cont.

Fall 2018 CISC124 - Prof. McLeod

switch Statement - Cont.

* Not too useful a construct.

* Menu coding is a possible use:
— Provide a number of options to the user, like “(A)dd,
(E)dit or (D)elete”.
— The user presses a, e, d, A, E, D, or some other key.
— In a switch statement, you would have:

Fall 2018 CISC124 - Prof. McLeod 21

switch Statement - Cont.

switch (userResponse) { // userResponse is a char
case ‘a’: case ‘'A’:
// Add operation code
break;
case ‘e’: case ‘'E’:
// Edit operation code
break;
case ‘d’: case '‘D’':
// Delete operation code
break;
default:
// Tell user wrong key pressed
break;
} // end switch

Fall 2018 CISC124 - Prof. McLeod

switch Statement in Java 7+

+ Can now use Strings.

» See Switch.java.

+ Comparisons are case sensitive. As if
.equals () is being used.

» Generates more efficient bytecode than what you
would get from a chained if construct.

Fall 2018 CISC124 - Prof. McLeod 23

Repetition or Using “Loops”

» Java has:
- while
— do/while
- for

— The “for each” loop

» Will discuss the use of break and continue

Fall 2018 CISC124 - Prof. McLeod

Prof Alan MceT eod

Fall 2018 CISC124

9/17/2018

“while” loop - Cont.

» while loop syntax:

» Aslong as boolean expressionevaluatesto true the
statements in the block of code continue to execute.

» One statement inside the loop does not need { }.

» By mistake, you might write the following - what would
happen?

while (boolean expression);
line of code

Fall 2018 CISC124 - Prof. McLeod 25

“do/while” loop

» Syntax:

* Note the “;” at the end of the while statement.

+ Since the conditional test is at the end of the loop,
it will always execute the loop at least once.

Fall 2018 CISC124 - Prof. McLeod 26

“for” loop

» The kind of while loop shown below:
int 1 = 1;
while (i < 21) {
// other statements
i=1i+1;
}
is used so often, that Java has provided another looping
structure that does all that is shown above, but needs
only one line:

for (int i = 1; 1 <21; i =1+ 1) {
// other statements

» (o]

Fall 2018 (CISC124 - Prof. McLeod 27

“for” loop - Cont.

* Syntax:

+ for loops are used when you know, in advance, the
number of repetitions desired.

« If there is only one statement inside the loop you don’t
need the { } brackets.

Fall 2018 CISC124 - Prof. McLeod 28

“for” loop - Cont.

* You don’t have to declare the counter inside the
for loop, if you have declared it earlier in your
program.

» But if you do declare it in the £or statement then
the scope of that variable will only be inside the
loop block.

Fall 2018 CISC124 - Prof. McLeod 29

“for each” Loop

+ Often, you will want to visit every element in a
collection, not just a part.

» Syntax of the “for each” loop:

Fall 2018 CISC124 - Prof. McLeod 30

Prof Alan MceT eod

Fall 2018 CISC124 9/17/2018

“for each” Loop, Cont. “for each” Loop, Cont.
* For example, suppose we have an array called + Equivalent normal for loop:
data, containing a collection of double type
numbers, and you want to add them all up: double sum = 0;
for (int i = 0; i < data.length; i++)
double sum = 0; sum = sum + data[i];

for (double e : data)
sum = sum + e;
__ + The “for each” loop is a bit easier with arrays, but
is even better suited for other kinds of collections.
 var can be used to type the element variable in a
for each loop.

Fall 2018 CISC124 - Prof. McLeod 31 Fall 2018 CISC124 - Prof. McLeod 32

Loops - Misc.

* Don’t declare variables inside loops, as the
repeated declaration process uses up time and
memory unnecessarily.

* There is no limit in Java to how many levels you
can nest loops.

* ltis customary, but not necessary, to use the
variables i, j, k as loop counters when the
counter has no intrinsic meaning.

Fall 2018 CISC124 - Prof. McLeod 33

Prof Alan MceT eod 6

Notes for Numeric Representation

2018.9.19

e “for each” loops

e Multi-Dimensions Arrays
“for each” loops

¢ When you want to visit every element in a collection

e Below is the “for each” syntax and an example

¢ Easier for array

for (type variable : collection) {
// statements

//suppose we have an array called data, containing a collection of double type numbers, and
you want to add them all up.

double sum = 0;
for (double e : data) // var can be used
sum = sum + €; // sum += e

O 00 N O

¢ Customary but not necessary, to use variable i, j, k to use as loop counter, FA M —ZE i > REE] > RE
2k
JE

Continue and Break

e Continue/jg i k42 1kloopH 3 —17 » 3f H#E#H T 45loop
e BreakJi: fl sk 45 g ¥ AMoop]

for (i = 1; i <= 5; i++) {
if (1 ==3) // #Ei=30 > loopHERTHEEFIREiI=4
continue;
System.out.println(“i = " + i);

¥
System.out.println(“End of Loop!”);

for (i =1; i <= 5; i++) {

if (i==23) // #®i=30 > loop&R T HEEIAE“End of Loop!”
10 break;
11 System.out.println(“i = " + 1i);

© 00 N O U B W N B

12 }
13 System.out.println(“End of Loop!”);

o NEGE TR Mibreak/continue > FH]HEHIEF) Ipik
Multi-Dimensional Arrays*

e An array containing one or more arrays

e 2D ArrayiE 5 ik —3k F4%, you can think of the first dimension as the rows(f7), and the second
dimension as the columns(%1))

e You can use three sets of [] to get a 3 dimensional array. Using the spreadsheet analogy, the third

dimension could be the sheet number, where each sheet contains a table

1 int[][] twoD = new int[4][2@]; //This array has room for 80 values(4%20).
2 int row, col;
3 for (row = @; row < twoD.length; row++)

4 for (col = @; col < twoD[row].length; col++)

5 twoD[row] [col] = row * col;

1 // Try using a for/each loop to generate an array
2 public static int[][] generateArrayForEach(int numRows, int numCols) {
3 // Try replacing array type with var:

4 int[1[] anArray = new int[numRows] [numCols];
5 int counter = 0;

6 // Try replacing types with var in loops:

7 for (int[] aRow : anArray)

8 for (int aval : aRow) {

9 aVal = 10 * counter;

10 counter++;

11 ¥

12 return anArray;

13 } // end generateArray method

*Style will be on another page
*LUF & —~good stylef) iy

1 /%

2 * A program to demonstrate good style and documentation.

3 * The program prompts the user for a series of numbers and then prints out the

4 % average of the numbers to the console window. The entry process stops when

5 x the user enters a negative number.

6 *

7 x for CISC124, by Alan McLeod, version 2.3, 20 Sept. 2018

8 x/

9 // Note that even better style would use Javadoc comments - but we don't know how to do

10 // this yet...

11 public class GoodStyle {

12

13 // This method displays the instructions for the user.
14 public static void showInstructions() {

15 String instructions = "This program provides the average of the integer numbers you
enter.\n" +

16 "You must enter at least one number.\n" +

17 "Enter a negative number to quit. This negative number is not
included " +

18 "in the calculation.\n";

19 System.out.println(instructions);

20 } // end showInstructions method

21

22 // This method obtains integer values from the user and returns their average as a
double.

23 // If the user does not supply any numbers - just a negative number, then the method
returns NaN.

24 public static double getAverage() {

25 int sum = 0; // Holds the sum of the numbers supplied.

26 int aNum = 0; // A number provided by the user.

27 int numNums = 0; // The number of numbers provided by the user.

28 // Loop until the user provides a negative number

29 while (aNum >= @) {

30 // Use the IOHelper class to get an int value from the user

31 aNum = IOHelper.getInt("Enter number " + (numNums + 1) + ": ');

32 // If the number is >= zero, add it to the sum and count it

33 if (aNum >= 0) {

34 sum = sum + aNum;

35 numNums++;

36 } // end if

37 } // end while

38 // Return the average

39 return (double)sum / numNums;

40 } // end getAverage method

41

42 public static void main(String[] args) {

43 // Show the instructions

44 showInstructions();

45 // Display the average

46 System.out.printf("\nThe average is: %.2f", getAverage());

47 // Sincere and unnecessary program completion message

48 System.out.println("\n\nAll done!");

49 } // end main method

50

51 } // end GoodStyle class

2018.9.23

Design A Method

e Advantage for modularity(##3e4):
o Easier to built
o Easier to build
o Easier to test

o Easier to debug
o Easier to modify
o Easier to share
Methods are written to avoid repeating code, make sure one thing for one method and make sure it do it
well
Methods should be short
o Ifit can satisfy all the other rules and still explain itself, it’s short enough
Keep all code within the method at the same level of abstraction
HNFE M. 1ZA=—NTop-down narrativeff] 54, The most abstract methods will be at the top of the
program, leading to the least abstract methods further down
RAT)2 parameters » % H g =4 > A parameter & i i i)
fili F object/list 2 {8 2 ™A 7] 26 2 f) parameter [l R PO 25 T LU B IX L parameter 42 5 — 2 FH BE4F

1 drawCircle(Point centrePoint, int radius)

2

3 drawCircle(int centreX, int centreY, int radius)

4

5 \LEZXTELETEXMT - AAMIERZENRAEHUET —ET

A method should either do something or answer something, or both.

Numeric Representation

Z3 >>> Al
o JHTHMIMETFELR 0 NEBE NI (FEEE AT * 2 ONBUR R B A1) + (FHCE
TN * 2 UNBUS R B0 — BB NBUS IS — AN FR AN AR IR 21 power
Yo NI » UM LSS — AN ECT) * 294 (1) + UMILE A IS — M) * 2%%(-2) ...
TNt >>>
o Nk (Hexadecimal Numbers) : o, 1, 2, 3, 4, 5, 6, 7, 8, 9, A(10), B(11), C(12), D(13), E(14), F(15)
o FoNHERINFE A RERIIE o 24T
= B65F >>> 11*16"3 + 6¥16"2 + 5%16"1 + 151670 >>> 46687
Feakd >>> Z k] (FEM B IRIE_A)
TNt >>>
o 25/ +: 2C6B.Fo6
o FXANINEE > FEIX LG AN 43 AR BT L
o 2(2) C(12) 6(6) B(11).F(15) o(0) 6(6)
o T4 AR Lok i F A A gk
o (0010) (1100) (0110) (1011). (1111) (0000) (0110)
T >>> N
o Ex:10110011101.11011
o /NEUSIEININETE > WATATFIRE > UA—H > B ROR > BlEJE AEIUA IR o AR T AN >)
RGBT > WEBFFIRE > UAN—H > 5K > BlE)E AU > e s mAhZE
o 01011001 1101. 1101 1000
o FEMAUL AR o ARE BT AR T
o 59D.D8

e Roundoff Error
o Only sum of power of 2 can be stored properly
o (0.1)+3#k#l = (0.0 0011 0011 0011 0011 0011...) — i
o ST LMK AN T R E A R LB ARVE 2 ERAESE 0 B B R o TR > gty
fftRoundoff Error

Storage of Integers

11111111(255 in base 10)
¢ Two’s Complement
o Make the most significant bit(# Z2i/1) a negative number
o filF-: F/hH“signed” (45 10000000, ik 13k f R (-1)*2”7 >>> -128 in base 10
o NFEMAILT —LIRAYTwo’s Complement it — 3 il 5k il %} B (507

* Two’s Complement System for 1 byte:

binary base 10
10000000 -128
10000001 -127

11111111 -1
00000000 0
00000001 1

01111111 127

» N E7ETwo’s Complement BT > HB& fth 182 X ALY
= 2%/MFilF : 10010101
o X o HFAER AL RS B B-1 o AR5 HARR ATy SRR IR IH Y
o B AXA S L 107
o R LUX I EELANE, byte X integer type {4 Erange from -128-127
o MIARFAILTTwo’s Complement LI HLTH - A0 ZEAE fz K Hbyte number > Flo1ti11ia LAl b
= GURETE B INEIZETE > XA E12 28 10000000 > BITE-3E] HriE128
» {HEFETwo’s Complement A » XM F12Z 54535 510000000, iX I 5425 i 1%k > B-128
in base 10
= So integer numbers wrap around, in the case of overflow. No warning from Java!
¢ Anint is stored in 4 bytes using Two’s Complement
¢ An int range from:
© 10000000 00000000 00000000 00000000 to
o 01111111 11111111 11111111 11111111
o RIYE# i B i -2147483648 to 2147483647
o {RIIRE —Mactorial FE)F :
o nl=n*m-1)*n-2)%... 2%1

o RJE 4 ML RA int, long

1 public static int intFactorial(int n) {
2 int f =1;

3 if (n > 0)

4 for (int i = 2; i <= n; i++)

5 f x= 1;

6 return f;

7 } // end intFactorial method

1 public static long longFactorial(int n) {
2 long f = 1;

3 if (n > 0) { k
4 for (int i = 2; 1 <= n; i++) {
5 f x= 1i;

6 }

7 }

8 return f;

9 } // end longFactorial method

o YRIEAIRAT HUNtHY N > FE121FM3LZ] > i Al - RO IHREI R C A T intiX Mg
il

o MPRILEERAT long N o FE21 I » Z RS FEL > ¥ETwo’s Complement 5/ T > 24
Hi 7GR > J&4Wrap Around 28 i S5 Y

o IXHHE > FA TRl LI —~mfi% BigInterger classf#Class

1 public static BigInteger bigIFactorial(int n) {

2 BigInteger f = new BigInteger("1");

3 if (n>0) {

4 for (int i = 2; 1 <= n; i++) {

5 f = f.multiply(new (.toString(i)));
6 }

7 }

8 return f;

9 } // end bigIFactorial

o ffiff] T BigintegerZ JE¥ TR HIRHE TR » (K MM EX ML L HNFEEEMKIZT
if i > By DAAS i BigInteger 24 5 — ik %

Storage of Real Numbers

e Real Numbers(5:40)] LA B I /N » AdATT AT LASE A RIE
o fEJavafiia > FSRAE A A Z W AIEEE standard number 754
e Like an float, is stored in 4 bytes or 32 bits
o These bits consist of 23 bits for the mantissa, 8 bits for the exponent, 1 bit for the sign

exponent mantissa
A

- ~
0 00000000 00000000 00000000 0000000

sign bit

o The sign bit, s, can be 0 for positive and 1 for negative.

o The exponent, e, is unsigned. The standard says the exponent is biased by 127 and that the values o

and 255 are reserved. So the exponent can range from -126 to +127. E is the unbiased value and e is

the biased value (E = e - 127).
o Mantissatg)4 7E /N S A I 2 5R%5 » always less than 1.

Storage of Real Numbers - Cont.

* So a value is stored as:

value = (-1)s x 1.f x 2E

* Forexample if s =0, e = 125 and
f=10000000000000000000000

E=1256-127=-2
The significand is 1.10000000000000000000000
value = 1 x 1.10000000000000000000000 x 2-2

Fall 2018 (CISC124 - Prof. McLeod 30

o XAMRIEIIE - &F HRMAERE0.011, ZA)57E+ 2] L 0.375
o Maximum float# Kk fifloat{H H FLLE 4
= s =0 >>> positive
= e=254>>>KE=e-127=127
= #(F2&3.4028235E38
= Float. MAX_VALUE
o Minimum normal floatf;/N#jnormal float{g 4 FL7E 24
= e=1>>>E=1-127=-126
= f(mantissa) = 00000000000000000000000
» HF21.17549435E-38
= Float. MIN NORMAL
o These are all “normalized” numbers because we are not using the reserved exponent values, 0 and
255
o A “denormalized” (or “subnormal”) number hase = 0

value = (-1)s x 0.f x 2-126

= 5 T denormalized%{ =% > floatf!) i E X vJ LI K T (to 1.4*10"-45, Float. MIN_VALUE)
o e=0,f=0>>>-0/+0 (depending on sign bit)
o e =255,f=0>>> -Infinity/+Infinity (depending on sign bit) displayed as -inf/+inf
o e =255,f!=0>>> NaN(Not a Number)
Double, (8 bytes) roughly +4.9 x 10-308 to 15 significant digits([7] 2 FIIEEE754)
o 8 bytes 14 T 52{ii f{)mantissa, 11y f{jexponent, i&F —1{i; ffsign bit

exponent mantissa

f_H/ —~ N
AN

sign bit

o double {#i ffl ¥ standardfifloat—#F > B DL b fifloat—4E)

o The exponent, e, is unsigned. The IEEE754 standard says the exponent is biased by 1023(E = e -
1023) and that the values 0 and 2047 are reserved. So the exponent, E, can range from -1022 to
+1023 in base 10.

» For example if s =0, e = 10000010000 (1040,,)
and f = 10000000000000000000000...

E = 1040,, — 1023, = 17,,
The significand is 1.10000000000000000000000...

value = 1 x 1.10000000000000000000000... x 217
or value = 196608.0, or 1.96608e5

o Maximum doublef K f)doublefs H L AE 24
= s =0 >>> positive
= e=2046 >>>E =e-1023 =1023
» HF21.7976931348623157€308
= Double. MAX_VALUE

o Minimum normal doublefz:/N#normal doublefs H #i7E 24
= s =0 >>> positive
= e=1>>>E=e-1023 =-1022
» HF S 2.2250738585072014e-308
= Double. MIN_NORMAL

o Minimum doublef;:/NrjdoublefE B 37 24 (denormalized)
= S =0 >>> positive
= e=0>>>E=e-1023 =-1023
" HF 2 4.9E-324
= Double.MIN_VALUE

e Special Values

o NaN

o POSITIVE_INFINITY

o NEGATIVE_INFINITY

o —EEAHLEHIERAE T RE S SEL

Invalid Operation Provide NaN
Division by Zero Provide +Infinity or -Infinity
Overflow Provide the largest possible

normalized value or +Infinity

Underflow Provide smallest possible normalized
number, a denormalized number or +0

Inexact Value Provide the nearest rounded value

SE55>55>5>>>

o Standard] i i G FA TR I 5 37— Leflag ({5 expection) iR 111 S 45 1) & AR
e Numbers like 0.1 that can be written exactly in base 10, but cannot be stored exactly in base 2.
¢ Real numbers (like pi or e) that have an infinite number of digits in their “real” representation can only be
stored in a finite number of digits in memory
¢ Windows Calculator:
o Can provide 32 accurate digit
o TItis the CPU that may have built-in support for 10 or 12 byte numbers
o Calculator also stores rational numbers as fractions to retain accuracy. For example, 1/3 is stored as
1/3, rather than .333
e strictfp
o This is a Java modifier that can be used in either class or method headers
o TEVHE RS > MU AR T BB RS B T IEEE754 L) A4 SEORS HERY 75 1 R Ak
SAE] T HRE Mg > 7 4 BIIEEE754 1) 75 ¥ X i A7

1 float sum = 0;

2 for (int i = @0; i < 10000; i++)
3 sum += 0.1f;

4 System.out.println(sum)

15 LI AR 20 T 510000~ 0. 1 > XFF ANIERBE > RAURE S TR A 4558 1000 » (HEEXS
TR > o LA RER S EEAETT > Bt LIRS S 4k — LR i (.

Roundoff Error

For the code above, it prints a result of 999.9029 to the screen

If sum is declared to be a double then the value: 1000.0000000001588 is printed to the screen.

the individual roundoff errors have piled up to contribute to a cumulative error in this calculation

the roundoff error is smaller for a double than for a float.

Big Decimal Class 7] DIStURS 8 B4 i i) FE 9 g % > {H 272 ff Hi BigDecimal) i {6 > effiency 24K
Machine Epsilon

e ¢isthe largest positive value that when added to 1 still produces 1,ie:1+&==1
e “Too small to make a change”
e For float: 5.9604645E-8
e For double: 1.1102230246251565E-16
e Observations
o Ifyou are subtracting two numbers and the difference between the numbers is less than ¢, then you
will get zero

o If you are adding two numbers, n1 and n2, and n2/n1 < ¢, then you will get n1.

Fall 2018 CISC124

9/26/2018

CISC124

« Assignment 1 due this Friday, 7pm.

* Quiz 1 Next Week. Topics and format of quiz in
last lecture’s notes.
— The quiz will cover the material discussed up to

the end of today’s lecture. (Even if | don't finish
what is in the slides.)

Fall 2018

CISC124 - Prof. McLeod 1

Today

» Finish Numeric Representation:
— Roundoff Error Demo — Summing 0.1
— Machine Epsilon.
— Effects of Roundoff Error.
— Kahan Summation Algorithm.
— Alternating Sign Summations.

Fall 2018 CISC124 - Prof. McLeod

9

Roundoff Error — Cont.

* Compute: [10000

301
i=1

* And, compare to 1000.

float sum = 0;
for (int i = 0; i < 10000; i++)
sum += 0.1f;

System.out.println (sum) ;

Fall 2018 CISC124 - Prof. McLeod 3

Aside - BigDecimal Class

» For when you need a floating point numeric type
that does not have any limit to the number of
digits you can store (how much RAM you have!).

* However, it is usually a good idea to specify the
scale of the numbers you wish to use.

» See SumPointOne.java.

* Why not use BigDecimal for everything?

\
Y wsiny b{\qolec[mcvl will :
CISC124 - Prof. McLeod Dﬂeﬁt &Q Q#Qkﬂ

Fall 2018

5 aISQ, it

[7 " o0 Sw\u\\

4o

QoW Sumes

iR
wuke o~ (_‘,\avﬁ?/

Machine Epsilon - €

* ¢ is the largest positive value that when added to
1 still produces 1, ie:

1+e==

» Let’s find out what this value is for £loats and
doubles (see DetermineEpsilon.java).

Fall 2018 CISC124 - Prof. McLeod 5

Machine Epsilon — €, Cont.

* Forfloat: 5.9604645E-8
* For double: 1.1102230246251565E-16

* If you are subtracting two numbers and the
difference between the numbers is less than ¢,
then you will get zero.

« If you are adding two numbers, n1 and n2, and
n2/n1 < g, then you will get n1.
n)y N3

therfore, 24

Fall 2018 CISC124 - Prof. McLeod

Prof Alan MceT eod

mLewmaky

4o SHaller don i,

nl=n |

Fall 2018 CISC124

2 e dierel H4E 25-#n), TR, 5B

4 2AAE S 1B roundaf] erbor %g %]

The Effects of Roundoff Error

» Consider subtracting two numbers that are very
close together:

» Use the function

S(x)=1-cos(x)

for example. As x approaches zero, cos(x)
approaches 1.

AR

Fall 2018 CISC124 - Prof. McLeod 7

=y

The Effects of Roundoff Error — Cont.

* Using double variables, and a value of x of
1.0E-12, f(x) evaluates to 0.0.

» But, it can be shown that the function f(x) can also
be represented by f'(x):

. sin”(x
()= f(x)= _sin’(x)

1+ cos(x)
* For x = 1.0E-12, f(x) evaluates to 5.0E-25.

* The f(x) function is less susceptible to roundoff
error.

P

k—

Fall 2018 CISC124 - Prof. McLeod 8

9/26/2018

o
ARG BPEAFAR (L5 BRI vadofl et 24 o4

"\

The Effects of Roundoff Error - Cont.

* Another example. Consider the smallest root of, "
the polynomial: ax2+bx+c=0: /7 whale vy

F B —b++b 406Lq1 b
e 2a ‘ f

* What happens when ac is small, compared to b?
+ Itis known that for the two roots, x; and x,:

Fall 2018 CISC124 - Prof. McLeod

il
ve

+- U

The Effects of Roundoff Error - Cont.

» Which leads to an equation for the root which is
not as susceptible to roundoff error in this case:

-2c

b+ NB —dac,

- This equation approaches —c/b instead of zero
when ac << b?,

Fall 2018 CISC124 - Prof. McLeod

The Effects of Roundoff Error - Cont.

* These are examples of the two rules shown on
the Epsilon slide (#6). What to watch for:

A small difference between two large numbers.

Adding a number that is too small to make a
difference to a large number.

rowddl ehor Sy sk sET R
k_.éé'%},oﬁ

Fall 2018 CISC124 - Prof. McLeod

Summations - Convergence

* The rules on slide 6 also affect summations.
+ Before looking at this — we should look at how you
do summations on a computer.
+ Since you can’t sum to infinity (why not?), when
do you stop a summation?
— See Part 6 in Exercise 4 for one simple technique:
— Stop the summation when the previous sum equals the N
current sum.
— In other words the latest term in the summation follows
the second rule on slide 6.

Fall 2018 CISC124 - Prof. McLeod 12

2%,

//\‘fi'?da’ﬂ it
344

Prof Alan MceT eod

Fall 2018 CISC124

9/26/2018

Summations Convergence, Cont.

» The exercise also demonstrated the need to
choose summation formulae that provide rapid
convergence.

* This minimizes the effect of roundoff error and
greatly reduces the computation time.

* You can also make algorithmic choices that will
improve the accuracy of your summations:
— Kahan summation algorithm.
— Alternating +/- summation trick.

Fall 2018 CISC124 - Prof. McLeod 13

Summations: Relative Magnitude Problem

* For example, consider this simple arithmetic sum:

! n(n +1)
?
L

Sn=2.1=
» Let’s fiddle with it a bit:

¢ Print out the values of the sum for n = 10, 100,
1000, etc. (see FiddledArithmeticSum.java)

n s
1=3 <
i=1
Fall 2018 CISC124 - Prof. McLeod 14

E\-\

n

A

v nSAgsx, B
B e

Y

£ 2
95 & 23

L, swééi%i“%»ﬁ;‘“
2 430\F o o,

AELEA

Fiddled Arithmetic Sum, Cont.

» Math tells us that the summation should be 1
regardless of the value of n.

For a float, results show:

Plot of sum versus index, for 100,000,000

2y v@

n = 10, sum = 1.000000
n = 100, sum = 1.000000
n = 1000, sum = 1.000000
n = 10000, sum = 1.000000
n = 100000, sum = 0.999999
n = 1000000, sum = 0.999900
n = 10000000, sum = 1.002663
n = 100000000, sum = 0.500000

What is going on for large value of n?

Fall 2018 CISC124 - Prof. McLeod 15

06

05

04 /{
03 f
02 ’#mmm”mmmmwj

01 1’“//

0 A“'“"“wﬁd’r

0 20,000,000 40,000,000 60,000,000 80,000,000 100,000,000
index

sun

¢ So the sum stalls out at 0.125, 0.25 and 0.5

Fall 2018 CISC124 - Prof. McLeod 16

Fiddled Arithmetic Sum, Cont.

* On the plateau areas of the plot, for a while, terms
are too small to make a difference to sum, so
these terms are lost.

* |f you had some way to grab these “lost” terms
and shove them back into the sum it should end
up being closer to 1.0 again...

Fall 2018 CISC124 - Prof. McLeod 17

Kahan Summation Algorithm

* (William Kahan, a Comp. Sci. Prof at Berkeley,
was into numerical computing and in the 80’s led
the committee that developed the IEEE754
standard.)

* Also called “Compensated Summation”:

Calculate the portion of the term that does not
contribute to the sum and then carry that portion
to the next summation.

Fall 2018 CISC124 - Prof. McLeod 18

Prof Alan MceT eod

Fall 2018 CISC124

9/26/2018

Kahan Summation Algorithm, Cont.

Using Kahan Sum

Calculate the portion of the term that does not contribute to
the sum and then carry that portion to the next summation.

S

+
I H
E

tempsum

- sum Correction for the
_— next addition
portion (remainder)

L]

Fall 2018 CISC124 - Prof. McLeod 19

06 /

. 7

02 /
M

0
0 20,000,000 40,000,000 60,000,000 80,000,000 100,000,000
Index

sun

+ See KahanSum.java

Fall 2018 CISC124 - Prof. McLeod 20

Remember our “Trouble Spots”?

Small Difference Problem

+ If you are subtracting two numbers and the
difference between the numbers is less than €,
then you will get zero.

* If you are adding two numbers, n1 and n2, and
n2/n1 < g, then you will get n1.

* We now have a technique to help us with the
second problem for summations.

* How about the first one?

Fall 2018 CISC124 - Prof. McLeod 21

» Here’s another “demo” series, this one created by
Ramanujan (a famous Indian mathematician, who created
many amazing formulae in the early 1900’s.)

y Ck+1) + 2k +1)

Ozg(_l) K!

P+1° _32+33 +52+53 _72+73 5
I 2! 3!

or,0=

* Note the alternating signs, and 0! is 1.

* See RamanujanSum.java.
Fall 2018 CISC124 - Prof. McLeod 22

Small Difference Problem, Cont.

Small Difference Problem, Cont.

* Using double’s the sum converges to:
4.960779927438127E-15
not zero.

* What's going on?
— Hint: remember the alternating sign.

— The sum is trying to get the difference between
successive terms that are close in magnitude towards
the end of the summation.

* How to get around the problem?

Fall 2018 CISC124 - Prof. McLeod 23

* How about adding all the negative terms to one
sum, and all the positive terms to another sum,
until neither sum is changing and then take the
difference?

* See RamanujanSumFixed.java.

« This technique works well for these alternating
sign sums.

Fall 2018 CISC124 - Prof. McLeod 24

Prof Alan MceT eod

Fall 2018 CISC124 9/26/2018

Numeric Representation, Cont.

* Your understanding of the limitations of how
numbers are stored on a computer will help you
design computational code wisely!

* Work, work, work!:

—You are now ready for exercise 4 and
assignment 2.

— The file 1/0 techniques covered in exercise 5
will not be discussed in class, but you can do
this exercise now.

Fall 2018 CISC124 - Prof. McLeod 25

Prof Alan MceT eod 5

QUiZ 2 Prep

Everything up to and including tomorrow’s material:

— Quiz 1 Java topics, but not Java History or Background (“How Java Works”).
— System, String, StringTokenizer, Wrapper classes.

— Method Overloading. — Catching, Building and Throwing Exceptions.

— Aliasing Objects, Passing by Reference.

— 2D Arrays. — Objects in general. Instantiation.

— Encapsulation

— private attributes, constructors, accessors, mutators and other standard methods.
— Exercises 1 to 9.

— File I/0 from Exercise 5 — concepts only

— you won’t have to write file I/O code.

— Unit Testing — concepts only — you don’t need to write testing code.

—TDD.

System, String, StringTokenizer, Wrapper classes.

e The class defined in the java.lang package are automatically impirted for you, since they are used quite
often
e Java.lang package includes:
o The Wrapper classes
o Math
o Object
o String
o System
o Thread
o ——> XELPERLET AT DINAPTHR ELATE (java doc)
¢ Aside: static Methods:
o static attributes and methods are loaded once into memory and not garbage collected until
main is finished. These methods will run faster the second time (and later) they are invoked.
o static methods can be invoked without instantiation of the Object that owns them. Math.random(),
for example.
o static methods and attributes are shared by all instances of a class — there is only one copy of
these methods in memory.
o A static method can only invoke other static methods in its own class — you can’t have
pieces of code disappearing from a static method in memory...
o FRNMEMFT (static)
o FIRMEMH AR
o AR B pstaticfB A o kGRS R AR R > IR A B Y JERR S R R AR

= ERSEOVERITT IR T
o JAXRBATVIH > KE RGEIEER] WMRA LR
» JERRAEIEDIN RPARS

o ANEYONTT R A AR B SCE O ERAS o FUE Y B R EE R L SN A 2 A statici 1H]
= IR SRR IRE IR GOR I > ANBE R 28RV)

o ERAE RS S 2SO N > BEE 2SRRI R T A%

¢ Instantiation (SZfi{k)

o

FEM AN ST, I8 R SC RGN R RO SEpI e, T

1 Date date=new Date(); 2 H HIWISEGIE ¥ — N HBIRIR SR, wiilxs R sepife.

e Math Class
o A collection of static constants and static mathematical methods

e Wrapper Classes*

o

o

o

Sometimes it is necessary for a primitive type value to be an Object, rather than just a primitive type.
Some data structures only store Objects.
Some Java methods only work on Objects.

Ifjava » f—tmethod sl ¥ B2k 44 H g object F1fj > 3XA-classf: 4 [Hlprimitive typefsh—
A~object

Wrapper classes also contain some useful constants and a few handy methods.

Each primitive type has an associated wrapper class :

char Character
int Integer
long Long
float Float
double Double

» e primitive type > 45 345%) B A& fh i wrapper class
= BN AR wrapper classfjobject#B] DL £ fEprimitive type B4 - (& ILAEFRATAT LA
I] — AR CTE T 3% /1> classHmethod
Integer number = new Integer (46) ;//”Wrapping”

Integer num = new Integer (“908”) ;

Integer.MAX VALUE // gives maximum integer
Integer.MIN VALUE // gives minimum integer
Integer.parseInt (“453”) // returns 453
Integer.toString(653) // returns “653”
number.equals (num) // returns false

int aNumber = number.intValue(); // aNumber
is 46

o REX S X Integerft) > T fEdouble B it —FEfmethod
» JELL RBT YRR > 45— Skinstantiatef) 75 1 0 © % depreciateddsi T

o IIFEAPLE #3142 F Integer.valueOf()
= Do: Integer aTest = Integer.valueOf(42);
= Aside - depreciation:
= somthing that has been taken out from language
= The Character wrapper class:
= has methods to convert between ASCII and Unicode numeric values and characters.
= isDigit(character) returns true if character is a digit.
= isLetter(character)
= isLetterOrDigit(character)
= isUpperCase(character)
= isLowerCase(character)
= isWhitespace(character)
= toLowerCase()
= toUpperCase()
e System Class*
o System.currentTimeMillis()
= Returns, as a long, the number of milliseconds elapsed since midnight Jan. 1, 1970.
s X method 2 E{Rinvoke) iX f~method f{J i {i > the number of milliseconds elapsed
since midnight Jan. 1, 1970 > WRARTERF—IFIGE —A > TERFE RN EEE —1 > I 4
HOABAT T EAR D2 >] DUAR B — MR AR P as 17 1 I i)
v Af5 55— conversion ff Jkextract the day from the value
o System.exit(0)
= Immediate termination of your program.
o System.getProperties()
= All kinds of system specific info
o System.nanoTime()
= Time in nanoseconds
e String Class
o Escape sequences in Strings:
= These sequences can be used to put special characters into a String:
= \” a double quote
= \ asingle quote
= \\ a backslash
= \n alinefeed
= \ra carriage return

= \tatab character

o

o

o

o

e String literals:
“Press <enter> to continue.”
e String variable declaration:
String testStuff;
or:
String testStuff = “A testing string.”;
+ String concatenation (“addition”):
String testStuff = “Hello”;
System.out.println (testStuff + “ to me!”);
Would print the following to the console window:
Hello to me!

String method (& 3L 4567/):

= length()

= equals(OtherString)

= equalsIgnoreCase(OtherString) // ATEFK/NE H LA
toLowerCase()

toUpperCase()

trim()

charAt(Position)

substring(Start)

substring(Start, End) // stops one location before end

indexOf(SearchString) // return -1/expection if it can’t find the string

replace(oldChar, newChar)
= startsWith(PrefixString)
= endsWith(SuffixString)
= valueOf(integer)
String is immutable - they cannot be altered, only can be re-assigned

However, Arrays are mutable, in contrast - any element can be changed

e Other java.lang Classes

o

o

Object class

Thread : a base class used to create threads in multi-threaded program.

¢ StringTokenizer Class*

o

o

o

This class is not in java.lang, this is in java.util.
you need to have an import java.util.*; or import.java.util.StringTokenizer;
This class provides an easy way of parsing strings up into pieces, called “tokens”
Tokens are separated by “delimiters”, that you can specify, or you can accept a list of
default delimiters.
The constructor method for this class is overloaded.
So, when you create an Object of type StringTokenizer, you have three options:
= new StringTokenizer(String s) //iX H % & idelimeterj&default delimeter : \t\n\r, space, tab,
line feed, carriage return
= new StringTokenizer(String s, String delim) //delimjgi /R H & Bk & Fdelimeter
= new StringTokenizer(String s, String delim, boolean returnTokens) //)& 1 ffJboolean i 3 2
truefJ i > B4 JEruturn B R F) 44 FEdelimeter 4 B

String aString = "This is a String - Wow!";
StringTokenizer st = new StringTokenizer (aString);

System.out.println("The String has " +
st.countTokens() + " tokens.");

System.out.println("\nThe tokens are:");

while (st.hasMoreTokens()) {
System.out.println(st.nextToken()) ;

} // end while

The String has 6 tokens.

The tokens are:
This

is

a

String

Wow!

= Ytoken remove | Z)5 > StringTokenizer Object #i#iE 2 7 > AHE H Frtokenizei% > HAEE
el
= Scanner Class Tokenizer
= The Scanner class has a tokenizer built into it
= Scanner uses a regular expression or “regex” instead of the (easier to
understand, but less powerful!) delimiter list.
= The default regex is: "\p{javaWhitespace}+" which means “any number of whitespace
characters”
= A whitespace character is a space, a tab, a linefeed, formfeed or a carriage return
= "\t\n\f\r" in other words.

e Method Overloading
o “Overloading” is when a method name is used more than once in method declarations
within the same class. (also like println()...)
o XAEMIE » #EiX M method declareffjclass B[» [method namef ILHL S| T A [H & /Fh
Mjvariable » method name#} 2 /& F
o The rule is that no two methods with the same name within a class can have the same number
and/or types of parameters in the method declarations. (The “NOT” rule.)
o HIY:
= SOVFH P TEME ATX > method I 45 7T LLAS I supply ik 4 £ argument
= —/method 7] PLxf A i) A4 222 fif i action
= Allows the programmer to keep an old method definition in the class for “backwards
compatibility”.
o WURTE F UL R BN X M method A T f# > overloading i LLRIIEZ Hif Y
difinition M T4 5 72 /7 53 B T

o How does it work

= Java looks through all methods until the parameter types match with the list of arguments

supplied by the user. If none match, Java tries to cast types in order to get a match.

O 00 N O U B W N B

=
(S

(Only “widening” casting like int to double, however)(E ffijavaZicast » 1 - £)ii5 AN
cast)
o Do not change the return type!!
e Exceptions
o Exception is another way to get something out of a method.
o Exception is thrown, not returned
o Exception is Objects
o When an error condition is encountered, a method can throw an instance of a pre-defined exception
Object.
o A method can throw several exceptions, one for each possible kind of error condition.
o If a method throws an exception, then that method is immediately halted and there is no need
for any return value, even if the method is non-void.
o Exceptions & & 0] DOWAR P AR AR IE S > {B 2] DS X AR
o [method<receives ;X throw Hi 3k [jexceptionff] » 41 53X > method 3% A P X ~exception
3% > A8 2Rt <invoke T —/method - WIR—EHINF > & —HF|main > XL FE M fifcascading
I F] T mainiR A BN A 3G > IBFE i £rcrash > Finally, if main does not catch the exception,
your program crashes and a message is sent to the console window.
o Exception Object:
= Type of the Object:
= IOException
= NumberFormatException
= FileNotFoundException
= ArrayIndexOutOfBoundsException
FR LI F 3 Rt > Mt — A 5 2 K i exception
Exceptionif 1] D) £ 4 String message
H 3 Binvoke T —/~throw exceptionf{jmethodf#ji% > complier£:forceffZ: Htry/block

try {

// block of statements that might

// generate an exception

} catch (exception_type identifer) {
// block of statements

}[catch (exception_type identifer) {
// block of statements

Y[finally {
// block of statements
¥1

» YEtry block)5 T > WIRER £ A —{ exception
= The code in the “finally” block is always executed, whether an exception is thrown, caught, or
not.
o Checked vs Unchecked Exceptions
= Unchecked Exceptionjgi & H B EError ClassfJError » 3x L8481 A5 J: Exception > serious

problem > A& i@ G BRI X —Mparticular codejgh 7] DL 3k). Unchecked exceptions
occur only at runtime and the compiler does not care about them.(OutOfMemoryError,
StackOverflowError, VirtualMachineError)
» Checked Exception&:— & Z i /i code B [) — P method §TFE Y » &1 LLE T & B code M\ 1y
0 1 (IOException, FileNotFoundException, ClassNotFoundException)
o Try With Resources

1 try (instantiation; instantiation; ..) {
2 // other statements that might

3 // generate an exception

4 }[catch (exception_type identifer) {

5 // block of statements

6 }1[catch (exception_type identifer) {
7 // block of statements

8 ..

9 }I[finally {

10 // block of statements

11 }]
o AR A SR AR B ARG B A R RS STV E BRI > QSRR X D method ST TIF T B 5
T exception » method {5 Ik > WRESCAEIA K |
o {HETETry with B » tryS3 i B4E- ST FF T X NS0 > HBEX MRSty — 450 > IR 423 5% Fax A
file
1 public class IllegalHalloweenException extends Exception {
2
3 VESS
4 * Supplies a default message.
5 */
6 public IllegalHalloweenException() {
7 super("Illegal parameter value supplied to Halloween object.");
8 b
9
10 /%%
11 * Passes along the message supplied to the exception.
12 * @param message A more specific message.
13 */
14 public IllegalHalloweenException(String message) {
15 super(message) ;
16 }

17
18 } // end IllegalHalloweenException

e Array

o To create an array to hold 10 integers: int[] testArray = new int[10];

» var testArray = new int[10];
o 7£ LEIHgdeclare 2 7 » fIE X B 1ZE - testArray HA&—f pointer - fifpoint to an area of memory

that holds locations for 10 integers
o It also points to one location that holds testArray.length which is an attribute of the array, that is
equal to the number of elements.
o [N fiT{Edeclare array i g >t A Loy HE
= int[] testArray;
s testArray = new int[10];
» XPETE TSR EFRA %038 > testArray is now an object of type int[] that contains an
“object reference” or a pointer. The object reference is null after the first statement.
 CUIRATE] T AT EHE > XANEHE > fgpoint to an area of memory that holds locations for
10 integers

* The array indices allow mutability. Memory locations are
calculated by offsets from the base address:

testArray.length

=)

testArray|0
testArray(1l
testArray[2
testArray|[3]]
testArra [4f
testArray|[5]]
testArray|[6]]
testArray|7
testArray|(8]
testArray.%

Array indices

O O O O O o o o o

Ainteger > #F—1"24 byte » IFLZUMEFE T ILAHF » BLZ9*4 = 36 byte > HFATIA — T4
T LA o java SIEHAAS TR 0 PTF A ATAEL6 byte > HEABL S BEHX WATECT

o Multi-Dimensional Alrrays

Multi-Dimensional Arrays

+ Consider: 1002fc
int[][] exArray = new int[3]/5];

int[][]

0
0
0
int[] .
0

exArray

0480ff

exArray[0]
1002fc 1010fc
int[]

exArray([1l]
1010fc 1201lab

o o o o o

int[]
exArray[2]
1201ab

o O o o o

Fall 2018 CISC124 - Prof. McLeod 30

= TR R B AT LABRR Y, > — > Kipointer » point®|—Aarray > array H i 4 —>elem#f &
—A~/~pointer > 4% J5 -4 il pointF]array §1
» XA —ANFEpointerffjarray B i 77 A pointer3f i3 > fthf] Jpoint 2 ffjarray A~ — 5 B —| size]

« Array initializer for two-D array, for example:

int[][] twoDArray = {{1, 2, 3},
{4, 5, 6},
{7, 8, 9},
{10, 11, 12}};

System.out.println (twoDArray.length); // 4
System.out.println (twoDArray[0].length); // 3

¢ Aliasing Object
o XAEEEYL > WA W AArray > firstRisecond #5244 k45 1) T fpointer » YEXFE 5L
T > iksecond = first » $XAEHTE > secondt2x A — A48 i firstfirfi5 1] (¥ Array i pointer > Jf 43X 4™
% > second 445 [i Arraay A8 B T garbage
= Java has an automatic Garbage Collection system: — Variables are garbage collected once you
move outside their scope. — Object contents are garbage collected when there are no pointers
pointing to the contents.
¢ Passing Parameters by Reference
o B —~Array passiff—/method BL[> X FE[H)TE > fEparameterfi) i > parameter HL A)
arrayt & fl4 i fharray aliasing#e ok > fy DISCAE B A pointer i b [array il < 2528 41 1 Y
o The rule for parameter passing into methods is: — Objects are passed by reference, primitive types
are passed by value
o So, mutable Objects (like arrays) can be passed into and out of a method through the parameter list.
If a method changes the contents of a mutable Object passed into it — those changes “stick” even
when the method is complete.
e Array Equality

o This test will only give a true when both objects have been aliased, using the assignment operator

“__«

o So, even if both arrays have identical contents, “==" will return false, unless both arrays point to the
same location.
o This means that comparing Objects with “==“ only compares pointers, not contents.

¢ Null Pointer or Null Reference
o Null is not a keyword in Java — more like a literal constant.
o Use Null == Arrayname to test if Arrayname is null pointer

e Objects in general
o What is an Object?
= An entity that exists in an operating computer program that has:
= — State
= is the collection of information held in that object. This information may change over
time, as a result of operations carried out on the Object.
= — Behaviour
= is the collection of operations that an Object supports.
— Identity
= allows the program access to a specific Object.

AN DAEAAE S o FEHE BT R - SEAT DURAE L5 BRI XS

o What is a class?
= If each of these Objects has the same set of possible behaviours then you can
group these Objects together into a Class
= Aclassis defined in the source code of a program.
= The operations that are allowed on instances of this class (the methods).
» The possible categories of state that are allowed for instances of this class (the
attributes).
= However, attributes cannot be added or removed and behavior cannot be added
or removed. These are defined in the Class.
o Object Categories
= — Tangible things (ex: Cat) >>> a real object
= — Agents (StringTokenizer) >>> acting on other object
= — Events and transactions (MouseEvent)>>>interact with user
= — Users and roles (Administrator)
= — Systems (MailSystem)
= — System interfaces and devices (File)
= — Foundational classes (String)
o Object Structure
= Two extremes of object structure:
= — Utility classes:
= All static methods and attributes
= — The Math class, for example.
= — You do not instantiate these classes — there is no point.
= — Customizable classes:
= All non-static methods and attributes.
= Attribute values (some or all) must be set at the time of instantiation before the class
can be used.
= Scanner class for example.
= And many classes fall in-between these two extremes:
= — A mix of static and non-static methods.
= — static methods have nothing to do with the attributes and so can be used without
instantiation of the class.
» — Non-static methods depend on the attributes which must be set through
instantiation.
= — Wrapper classes for example: Double, Integer, etc.
¢ Encapsulation
o Encapsulation is the process of defining a Class that has at least one customizable
attribute.

o In Java, methods and attributes must be encapsulated or contained in a class definition.

» Consider the general model (or “pattern”...) of a
database:

Collection Database User Interface
« Edit « Reports User
« Sort ..
(oot)y - i et) ©
* Load

* Each record is an instance of an Object, too.

~N o o A WN R

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

IllegalHalloweenException.java
B T Ercepeion closs HH34

/%%

* An Exception thrown by the Halloween4 Object if parameters are not legal.

*

* <1i>The year must be between 1959 and 2016 inclusive.

* <1i>The number of kids must be between 0 and 500.</1i>

* <1i>The temperature values must lie between -30 and 30.</1li>

*x The weather condition can be "rain", "snow" or "clear". The default condition is

"unknown".</1i>

*x

* @author Alan McLeod
* @version 1.0

*/

public class IllegalHalloweenException extends Exception {

o .8 % Ae*avlté{\meﬁuge, ﬂ%”i‘

* Supplies a default message. i{fﬁ:

*/) BTEEAE T R WA

public IllegalHalloweenException() { s-gyi»\l’ w\eSSaﬁQ
super("Illegal parameter value supplied to Halloween object.");

¥

VES:

* Passes along the message supplied to the exception.

* @param message A more specific message.

*/

public IllegalHalloweenException(String message) {
super(message) ;

} // end IllegalHalloweenException

RS
Lve
qw \C

o U W N

~

10

11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34

35
36
37

Halloweens.java

import java.io.Serializable;

/%%

* A class to store Halloween information.

k <p>

* The year, the number of vistors, hourly temperatures in deg C and the weather condition
is recorded. This class

* has been created as a lecture example, and is not otherwise particularly useful!

B S <p>

* This version demonstrates the implementation of Comparable (for sorting) and Serializable
(for

* filing). Also, the mutators for temperature and weather condition have been combined, so
both

* attributes have to be set at the same time. In this way they cannot be set to an illegal
value

* independently.

*

* @author Alan McLeod

* @version 3.2

*/

public class Halloween5 implements Comparable<Halloween5>, Serializable {

private static final long serialVersionUID = 4705089863030936649L;
private int year;

private int numMunchkins; A{U—‘I‘M&S musk be fled‘“e(k os THivete, go that

private int[] temperatures; dae cla.g “hak owins ~<hewn con contiol 'lww —el«g
private String weatherCondition;
ove gek

VESS

Full parameter constructor.

@param yr The year when the data was collected.

@param numKids The number of Trick or Treaters!

@param temps The air temperatures in degrees Centigrade in an array of int of any

* ¥ ¥ *

size.
* @param weather The weather condition: "clear", "snow" or "rain".
* @throws IllegalHalloweenException If arguments are not legal.
*/
// 4 parameter constructor invokes mutators
public Halloween5(int yr, int numKids, int[] temps, String weather) throws
IllegalHalloweenException {
setYear(yr);
setNumMunchkins (numKids) ;
setWeather(temps, weather);

= constucti- , 4o gt oll ?o)—ﬁmz't'eks

38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82
83
84
85
86

} // end Halloween4 4 parameter constructor

/%%

* Three parameter constructor. The weather condition does not have to be supplied.

* @param yr The year when the data was collected.

* @param numKids The number of Trick or Treaters.

* @param temps The air temperatures in degrees Centigrade in an array of int of any

size.

* @throws IllegalHalloweenException if arguments are not legal.

*/

// 3 parameter constructor invokes 3 parameter constructor with an assumption about the

// weatherCondition attribute

public Halloween5(int yr, int numKids, int[] temps) throws IllegalHalloweenException {
this(yr, numKids, temps, "unknown");

} // end Halloween4 3 parameter constructor

/%%

* Sets the year the data was recorded.

* @param yr The calendar year.

* @throws IllegalHalloweenException if the year does not lie between 1959 and 2016

/ S{)\f’}‘.’n& muiz V) qw‘lg

public void setYear(int year) throws IllegalHalloweenException { AZ/<4 < iLZ
if (year < 1950 || year > 2018) %ﬁc ivete — ¥ .

throw new IllegalHalloweenException("Illegal year: " + year); *,g_ l—f’%‘gﬂ- ﬂﬂ;L\dtﬁt

this.year = year; J{ii&‘tﬁﬁtﬁ

} // end year mutator

/%%

* Sets the number of kids.

* @param numKids The number of kids arriving at the door.

* @throws IllegalHalloweenException if the number of kids is less than zero or greater

* than 500.

*/

public void setNumMunchkins(int numKids) throws IllegalHalloweenException {
if (numKids < @ || numKids > 500)

throw new IllegalHalloweenException("Illegal number of kids: " + numKids);

numMunchkins = numKids;

} // end numMunchkinds mutator

/%%

* Sets the temperatures array and the weather condition String. The temperatures are

* recorded with one temperature per hour.

* @param temps An array of temperatures between -30 and 30 degrees C.

* @param weather The weather condition as a String.

* @throws IllegalHalloweenException if the condition is not "rain", "snow", '"clear" or

"unknown",

* or if the array is empty or any temperatures are not legal.

*/

public void setWeather(int[] temps, String weather) throws IllegalHalloweenException {
double avgTemperature = 0;
if (temps.length == @)

87
88
89
90

91
92
93
94
95
96
97
98
99
100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

throw new IllegalHalloweenException('"No temperatures supplied");
for (int temperature : temps) {
if (temperature > 30 || temperature < -30)
throw new IllegalHalloweenException("Illegal temperature in array: " +

temperature);

avgTemperature += temperature;
}
temperatures = temps.clone();
avgTemperature = Math.round(10 * avgTemperature / temperatures.length) / 10.0;
if ((weather.equalsIgnoreCase("rain") && avgTemperature > -5) ||
(weather.equalsIgnoreCase("snow") && avgTemperature < 5) ||
weather.equalsIgnoreCase('clear") || weather.equalsIgnoreCase("unknown")) {
weatherCondition = weather;
} else
throw new IllegalHalloweenException("Illegal weather/temperature combination:

weather + ", " + avgTemperature + " deg C.");

} // end setWeather mutator

/%%

* Returns the calendar year the data was recorded.

* @return The year the data was recorded.

*/

an
- e54e)) VIS
public int getYear() { ﬁ)\?—t% 0-£Ces3°)Y)

N At i B

return year;

} // end getYear

/%x

* Returns the number of visitors.

* @return the number of Trick or Treaters.

*/

public int getNumMunchkins() {

return numMunchkins;

} // end getNumMunchkins Accessor

/%%

* Returns the temperatures array.
* @return The temperatures in degrees Centigrade.

*/

public int[] getTemperatures() {

return temperatures.clone();

} // end getTemperature Accessor

/%x

* Returns the weather condition.
* @return The weather condition as a String.

*/

public String getWeatherCondition() {

return weatherCondition;

} // end getWeatherCondition Accessor

136
137
138

139
140
141
142
143
144

145
146
147
148
149
150
151
152
153
154
155

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

181
182

/%%
* A String representation of the current object.
* @return A String representation of the contents of the object containing the values

of
* all the attributes.
*/
// Overrides (replaces) the toString method of the Object class.
@Override
public String toString() { 4*’
String s = "In " + year + " there were " + numMunchkins + " kids. Temperatures each

hour were: ";
for(int i = @; i < temperatures.length - 1; i++)
s += temperatures[i] + ", ";
s += "and " + temperatures[temperatures.length - 11;

s += " deg C., and the weather was ";
s += weatherCondition + ".";
return s;

} // end toString

/%%
* Tests two Halloween5 objects for equality.
* @return <code>true</code> if all the attributes of both objects are exactly equal,
<code>false</code>
* otherwise.
* @param otherObject The other Halloween5 object.
*/
// Overrides the equals method of the Object class.
@override
public boolean equals(Object otherObject) { ‘f*
if (otherObject instanceof Halloween5) {
Halloween5 otherH = (Halloween5)otherObject;
boolean arrayCheck = true;
if (otherH.temperatures.length != temperatures.length)
return false;
for(int i = @; i < temperatures.length && arrayCheck; i++)
arrayCheck = temperatures[i] == otherH.temperatures[il];
if (arrayCheck)
return year == otherH.year &&
numMunchkins == otherH.numMunchkins &&
weatherCondition.equalsIgnoreCase(otherH.weatherCondition);
} // end if
return false;
} // end equals

/%%

* Compares Halloween5 objects on the basis of the number of visitors only.

* @param otherH The other Halloween5 object.

* @return A negative <code>int</code> if the supplied object had more vistors, zero if
they have the same

* number and a positive number if the current object has more visitors.

*/

183 public int compareTo(Halloween5 otherH) {

184 return numMunchkins - otherH.numMunchkins; JP

185 } // end compareTo

186

187 /%%

188 * Returns a copy of the of the current Halloween5 object.
&oouﬁ>189 * @return A copy of the current object.

190 */

191 // Overrides the clone method in the Object class.

192 @Override

193 public Halloween5 clone() { fP

194 Halloween5 hwCopy = null;

195 try {

196 hwCopy = new Halloween5(year, numMunchkins, temperatures, weatherCondition);

197 } catch (IllegalHalloweenException e) {

198 // Should never get here!

199 return null;

200 } // end try/catch

201 return hwCopy;

202 } // end clone

203

204 } // end Halloween5

» Everything up to and including Thursday’s lecture:
— Enumerated Types.
— Inheritance.
— Polymorphism.

— Interfaces, Anonymous Classes, Inner Classes,
Abstract Classes.

— ArrayList<T> Collection Type.

— Generics: Generic Classes & Methods, Use of
Wildcards. The Class<T> Object.

— Lambda Functions.
— Method References.

Method %QQJeNMCQ
18T % IR RIS ollect £ 64 methoo] / Conkent
AW Clsc 4, LT Araglist o tge Obieet 5 Angglacod db,

olL St COL]eL{ 1t Cempare A J 3
|

ﬁ%%——i[%;nobjebtu Class + ¢ methsd

)avv\\arla Cunction
ABRAA iwapoe , EBE T dlotoct medhod (24 meded leuder, g2 4

bﬁé) a\;&-\%c‘(l ’T A“ oMY moug Clﬁ% /)-aMLpLz fum:{-\m« 3{5‘}%@4435[‘ W\etLWl

/ZEJ . public interface MessageSender {
void sendGreeting (String name);

} // end MessageSender interface

)\‘/? —ﬁ'iwﬁé \Wkﬁ)—jﬂlﬁ) j}\# éemlc(l"ze{“uzj_"_ VV\Q'E[‘!“YJ% /T aLS-El»oc{ m:&hoi
z,céri 82 44715

public class LambdaDemo {

public static void main(String[] args) { M
- r&" agesel :.> system.out.println("Hello " + nam!);J - E%ﬁ%\ lOVV\LJ“ {uwfl‘m‘éé—i{é{i ‘% zy&\l'e- Sentar

-sendGreeting("Steve"); 24 R prameter —> %Ef{ﬁﬂ‘ 4o

L } // end main
} // end LambdaDemo %’T eoy-q metel -2 c (3 B ,C - !)Z:
© %X tamete) L2422t
e

;Zja] fatame-tel - %j’{{,%
A
@ Mwow = -2

@ 25 Peoreted ly | Yody 244971 B2

&
,\aty‘ﬂ'&-p%‘ﬂ‘é -1 olbetract method {3’:\,\ ﬁw:{nml lm{e}q(uce&- BN Intesgper.
\ii?ﬁé obetract wethsd EZ3 Jombd function VeSS)

+ ﬁmo‘l"'ﬁvul Iw('O—JuQ %')T oibstroct Me‘dwfl%\\whr‘[uc
AMANANMNNNAANAANAANAANAANNAAAAANANAAAN AN~

displaySome(db, pers —> {return pers.getAge() >= 20;});

Generic Cless

* ind d [ike having e goromeder Fi clog L\e.,Jew#,éQT"fa;mefep-" FHE) Tass 4417
Yejerence .:JVL Sflﬁ"o[\.es @ —EU?Q

3 A Eﬁ:mflz
public class Sample<T> {
Yy
private T data;
_) Sample<Integer> num2 = new Sample<>();
public void setData(T newData) { _7 ;(il% =2 num2.setData(67);
data = newData.clone(); — System.out.println(num2.getData());
}
public T getData () { =7 qu\‘%/{}%q UL‘]QL{ fd?e _t\) ?%,: E;«caf‘t"o\/\
return data; o
} =2 Z‘a\d\\ﬂ’ﬁ, g rimitive tyre £
} // end Sample<T>
Fall 2018 CISC124 - Prof. McLeod
=2 Cun we in{wtfﬁw mwl abstract class

ﬂ?%& é‘)\- Q,\assﬂ?j‘]; —)(Conétlhuct a\r‘é‘é’% =7 17“}-":‘ scmfl& C‘\‘ new Do‘fo\) f

theta = newDite . clovec) 3

Puomoctic Loing - 32 T BF Generie clos 8 N edvantoge , 15E4(0] adhy obiect AL Ltk
B, A T A instantiate FEL obect, LR EH R, geneqc closs R BZAFAR
box 2k

& Ay \
4§q - > 2—;1? nontiate
Sample<Double> num3 = new Sample<>(56.7);
System.out.println(num3.getData());

Dutowmg 4cc un\aoxfwg s ﬁ'f:\"a S’T AHadl\é-(: A'«Féé %@) ﬁgblﬁ%%w%, ,g‘)\’ ‘T
Prmitive fype
B double oyl = mylist. gex lo)

Generic Closs -
Bo\mJt‘] .
X % Generic class \«mle*‘(’ﬂ\ris‘ffl\j ony wamber :({ gorameters - 2llc clasg Somple < T, h>f

4 A4l A extends [super BB V¥ey word FpR A %89 oljes tyte
<7 edends Rootclass 2 - AR 'Qou'kdnés ‘65 wifer
’&Q 27 Q*’(QV\JS oot dﬂS} Y ?{2—2& S ?QET}Q\ Qau&dds 4%e ?,‘;2,,, %3 gl

2T sger Tueger 72 2463 Tnveger, Number , Olieck 8§ —2 lower bound
=2 bundig 33So, MEFARAETIN wethod body b, T UG AL bownd 54 closs 54

wethod

Generic Method
x4 Generic Class %@é{%,]ﬁ A =45 method B
gth‘n\‘, m\‘ol. = d-e:\:-(d R aee M.‘a(fu\‘-i CL)J-

public static <T> T getMidpoint(T[] a) { > myoke =2

return a[a.length/2]; par
; sz

Some Erception :
Treger w1 = Clkeger Jeligg- ge<0mid going Covrings) = " ClussCaseloeptio®

jm—‘eae,\, midl = U‘ﬁf‘f“\j o 2860 7 get Mt\o‘fm‘n{ cbyy = Com t e lation Bvor

¥ Gonstructalrs con also Leﬁe,nem‘r.. ben in w - 5emzlﬂ\c c_l«%)

Generic Wildheards -
A A wilderd s ke U within de 7, A wldead cn f'rovflje o Sie (FHZ)H

4ype generic class Jo) other generic closses

(;l : I]»nJ)_fH 22> oloky - AMJLS—Q <hild >¢ L)

N ekl 7

* BinAfV\\j
ﬂb’lﬁﬂ"{ v»?ur:m—(l S 34t class Lind fEﬁ; & ex’ceml/gqe;_ key word

X* Lv\mﬁue,:
”Fﬁﬁﬂﬂ WI\AO‘»—A ﬁé generic clusg 5%_ fwxmmue'éé

*Pmaylict 277 [i the omly gossibtle agpe ta€ ollows che cheation
QJ o o 0J Jeneric classes

* Tl'e oLJQC\‘ class conbwS o W\e&lwcl , 3@!\qu5£] Aot returns ol
class <T> ablecd
A AMMNANAN

-
* [er Iu&wqec'fr‘m: Thocess d ol-‘scevel—-‘v:j c[as_g sthucture ot i e
Cmethods 5 Omnofotiont Q_‘HH‘LM*QS , aner C\QSS{S etc.) Hoowgh o ClaSS £17

OL Jeet

‘& Q%\Q:*L‘OV\ - WLD‘{ Llﬂ'?fﬂvlj WIAQV\ \TDK uge ,{L S l“’\£}- mation a€ Jlupy-— {:MQ

An.au Lt Collectisa Tyre
A5 o Qeneric (Jniq Shhuctare lelwgs to Jave - util . ackoge.

4 Dedabation : A)—lra\‘])—-'s—ﬁ 2449e > et vame : new A;,Lot’l.‘s-(249Pe> ¢)
v
-)ﬁeL]ec-(-{d?e

sise: TAGREY - T 520 19 3577 2, AARIT Anguhist, THR 92534845
Afte : 4 dedoretisn A9 9 AR, B Apeqles | o F <7
% AJJ e|ew\ew{:
myList . odd (47673)5
“‘;ggéig\,, nstntiadte — Aafometic &x@

*$f ftle 5'\.}2 # {Ae cgl‘ecfl'a\/\
mdl.‘s-(. gzec) —2 yetun - wnt

'4' eﬂ{(f“oka‘) —2 retwms Ahe dQW\en{ 4 e T ot 'El\e gn‘vem (\up(e)(

The iv\Je;g fositions ore mumbered —Jvaw\ 2e-0

A Rf(pstim, now-wlue) —> c[mvnges the elemant ot de given Pustizn
oA odd (PoSition, view-Value) o new valwe 5 inserted €0 £he Position

A temove (Posvt™n) > remwes the element ot the mv;jqj PosiH/on
% Am To sz 2 Yemove wncllocated osition

X chec) = RS 44 peintesr

%o ahes o HB-TE e TH o AR TAR T TS Auaghist 2T

4 declar e ﬂrHrﬂQj Lt 9 gé’fi Y218

Arrayg bist 2Type7 List-neme = new Arraydist. 2= ¢,

J
L5k 74§, BAY 2ok
D‘\'ammi, this € o afect

T Tl Lot o
Re whew Jova Sees the
”’[rjfe,") it n(\lls le blank

B g
#(hgist 2T> & mutelle %
+ ‘K@auloL \.Fs&fi mmue&f}

4| Gtring £ inanactolle$

va\et— Cqus > Annn\ymws C,GS_S) Abgd,m,(

L\v\ey Ctas)
4 A c[ass c}(’.\‘;{neol within o c[&S}
@\Jf # ’_%3* (!G.thed s Qﬁw‘fQ

public class OuterClass { it' - C(—_)
nner cless TARBAER outter-

private class InnerClass { CKC‘SS ‘ﬁér“az
Attributes of innerclass
\ Ay .
Methods of innerClass * outer C(‘J’S g%) mSentiate iane

} // end InnerClass QlGSS y 1@/}\1’;&‘5& \hne- Cl,c&S ﬁéq

Attributes of OuterClass
Methods of OuterClass

O

} // end OuterClass

4}@% lass Z7H (aner cless ﬁf} metho| BA VA - Owtterelass . innercluss | metheg

Arengueng Cls
JBBRAA wierhee , CEBE T dletiact medhod (24 methed beuder , 5554

\.95(?4)) 3\2’1-\ %\rﬁq%—)r A“ O’V\,meus CL"% /LaMLp(q {:umch\w\ 33’\‘}%5%2.4- ledﬁ(l

public interface MessageSender {) \‘er,,&cg
void sendGreeting (String name); \\/ on AV\"’V\JW CIQS§
} // end MessageSender interface /

public class AnonymousClassDemo {
)
public static void main(String[] args) { ﬁ‘m
MessageSender ms = new MessageSender() {
public void sendGreeting (String name) {
System.out.println("Hello " + name + "!");
} // end sendGreeting
A
}; // end ms, NOTE ";"!
ms.sendGreeting("Alan");
} // end main

} // end AnonymousClassDemo
Fall 2018 CISC124 - Prof. McLeod

Abg'd-ao{ C,\a5§
1 A clafs Cn wlse have conclete m-th-i Jqq‘;‘m‘tt'mﬁ emol oy Kind 2\‘](0{‘9';50&

Lw{ N con ahl\'j lﬁ Q)({QWEEJ..
43 pablic Jlgeract class My Clasg .- -

AL&*H«C{ Vf\e‘tl‘loA
% - A2A header 57824447 REGH methol
/QA - ?uu-‘c aLS‘HraC‘f Lt w\ml&[?u C(‘n{u , nx L))

-& @19}-’1\ C(CSS ﬁ D\L{;““"‘C‘(me-tLleA ‘ﬁé‘i/é; ?‘i;’:—ﬁg Jeo[“"e'l oS5 QLS-('H/C'{ C‘Eﬁ

- X exen| 7 obstrect closs B9 class y48 FaGE - talstroct clas, B4 override
% olekhect c(ﬁSS 4‘@{] olctlact method

L&m—&w(

Constont ot bute

QLﬁlrw/t wetl.o,[55, ’Q\a’[l/)\ﬁz CMi*emen{e,{
L@:»{ze& -1 %VJ\%L &&ul‘t medod ‘éé class

Static medhsd

A Tntofee 45T} extend ohiect | 42T extend interfuce

4 IWQQPQ[QLQ A4 nde mey&eoL A mdementel 1
AR

public class Test implements interfacel,
interface2, interface3, .. {}

* 4o @’Tﬁ wilement 4 \"\@v[“f/?- ’#jﬂ ’ij'éé method name , Fou, Jr implement B
ﬁﬁ’@s/ﬂ%\ ﬂtvf[ema«{ metho

owrFide obetoct wethod
A4 -Rless imelement 3-T 0 w&e;;foca overide /acaef—t dedeult wmethsd

nsSe. stutic method

?o lj m ol'-?l'\ S
* when o Fointer QJ o forent clasg SUR G ends up '?al\n‘h‘rv o gl.'#avzu-e
child cless oliects ot runtime. Also colled "Jdﬂamfc Iafnol,',,J.,

JQVM Modqle

A MOJ.L\E i (7 {uckoﬁgﬂs’%] ’Tgﬁﬁéﬁé Nawme. ;Q[Moa(w[e

* EML\ W\wlulQ LAS o VWOJ\A,‘Q - ("\JO ,Juvo\ J\'IQ TNCKO-ae Q\p;t"aL[L
fackege Fequived

Moiub - ?yJ'a .C]n\lh Jfle J‘NMM{ . # module Name muse be un/gue

module module_name {
requires module_name;

exports package_name; —> QOC\‘C‘QQ OVD"’DMQ

L;LP“)—I‘QS

A A),.Lw;d # N C(AGS o)&:.m\ied ndo fackaaoz a(p'ale» ’JJ #* Jor Jfle,
('W\nJulQ Jﬂﬂ‘?ﬁ'\b)

lm\\E»HQIALQ
Torent Class / super class

~
CL:U class cl«.‘lJ cla_§} — o.[wajs mske Conchede
4 child clags A4 2R farent dass 54 bl cttibute oud method
X $764 4425 obiect 275 £ oljecr dass 54 il cless
BN fublic class il oxfend Revent -

% C°"‘f"|e)’ will Jﬂ-ce You t laveke guper in g CL-‘U class ‘Constlucts,

ond 4 mast be the (F\‘»s-t [he ©a the constructor
% Belonds Ao Folymorphisy

-4%};&4 wethsd

ﬁg%’ﬁ‘ﬁ‘ whehie rent class B9 meeog
6M‘3C,lass ‘ﬁé Mef”“‘d O\I&)»H‘JQ the me-tkml

OVQ\—lnacl &"\Q "V‘Q‘d’“’d
’Pe‘{.‘v\e , A s cegs B method F4 tnske garent oless %6 wethod
A9, NAkshsaH

Fdnel - FMEE dacs JLRH ectend 3
* "[' clegs ?.as extend X cless

E Numeyrnted TC(\’Q

enum s o Key wn)—tl , wnd s a -tjre

enum IceCream {CHOCOLATE, VANILLA, ;{»C«al\ec-h'w\ v[CZJVlS‘hn't
STRAWBERRY, GOLD MEDAL RIBBON, WOLF_PAWS, -
BUBBLE_GUM} ; Fis lmmutable

* equalse) OIAAIZH ==
#A ‘{'oS"iHnJ()

X CGowpere Toc)
3% o*dinal ¢) Ritwns the numerc loadion acs the value n @aum Fis¢
+ VquQSc) %& Enum oriay ﬁ%}&-.ﬁg 'T%_\é oLbay
Torroy of 4his object
L—//__/

‘%’ \/alueﬁ C) ICeC‘FeQM L3 (ﬂuvo ulks = JC&C#@M_ Values c /J'

s Abs imp n Interface{

t a, int b) {

int remainder(

return a % b;

t subtract(i

a-b;

t sum(int a, in
return a + b;

public static <T extends Number & Comparable<T>>
ArrayList<T> lessThan(ArrayList<T> array1, T obj) {
ArrayList<T> newArray = new ArrayList<>();

for (T value : array1) {

if (value.compareTo(obj) > 0)

newArray.add(value);

}

return newArray;

}

Broblew 3 Sfecifically = ~HEALT EEGE medod
+§-4 RAERL
4 Varioble 9 dechietin 44345 ~2ENeE woriclle Gitye !

4{’ ﬂ%i ﬂ«Ll < Static Fetuln ‘ﬁ‘jf& Neme J {

MAAA

v
Rk meter 25 ZENE Agpe 11

AHRE REQURZHY 0, R-2EX4] a4
Q‘lé 'T%’/l’ﬁ{l M“’Lj . wt L] olraf dame = new nt E,‘\-J

Size

@@’T%‘& 2-) o+ef: WwL1T] ongyname = new it f:l C.]

)’bw Sl;e Oluhm
Sz

KR lopA ooy e ad 5 P leach at do s,
1D awey: Jo-Ciszo j i< ouay. kugth 35 (x4)
oy Li] =

2D omey: J-n— (izo 5 (2 oHhoy. leag-th ; ()
b §=0 3 § ausyLi].length 5 3+41)
oMay Li] [yJ = <V

& THEATHRE| B (g custiqbiti-
MAtfos B AN I ol 2 Cht) BHD

TYSR TN
Screen input wing the Counne) leSS :
@ék%i’fﬁ*‘ﬁ X cass - mt Jave . wtl .Scnyme)j
ia?jg st Sﬁ-ﬁemm—(é’ﬁﬁ clags cjg&.‘y\:ﬁm J:“Iilﬁé
@ instantiote —TEG ccmner cloge oliect
g(a.vme\— gcteen = wnew Scamner ngﬁewu n) D
XL SOPE APy S OTEY
Systtm. out. Fhaeh ("~ "))
258 304 wer BpHEa
_q, wSes Nutm = screen - nexelat €) y — éi\' ;‘“‘{'9631"
ner Num : Scheenm. nexglinec y 5 —2 ébi\\ §‘U—|~Q7

.

¥ Intege Wt Clus © tntinte: Infager ohluws Luteger . vake &f (~);

Ly S‘U—"\\j Cla.sé ﬁé method - 73 =

* St Hkenizel I -T string GAAY Lirele pces 2 A
139 §&HQ1 Tkenizer ¢4 = mew S‘U|'{7Tb¥9nfzel— Caltring)5
while (st. has MoeTokews €))
%3“9‘44, owt- fH’n{lu‘ (st. vext Bkenc))5

3

= IW\M\A&D-UL
4+ Erum . o Kejwod | o tyre, 3B3F-T collection o Conchunt Gorivg -
declar = @num whaterer {HA‘RRT, BPABY , H1DO \2[
M‘:) P

*?‘S‘;‘,) w'm—ﬁevel—f‘l‘T oljec 3
QVJ‘EMQ’» Wl\c*e'ei— al\d‘dﬂl‘ﬂ = \A/l«ufever . HAQ:Q’)’
R 308, angthiy FCAIE S5 HARRY §
252 %o

AEREIAR
(D gemen‘c clas_s
@ Apaylice <717
@ EHVL" gil\a‘t‘w\g /Lo{e ‘B\\uu{/‘vt?
@ \];Va [:v\

Genaric method
Methok heuder = Pblic Stutie 217 vewwontye medodname sy f

g

4 Metroct wedhod : Pblic chovract retuntpe Medhodwame (ergs) 3

* AL&U«L{ qugs kenic}-i faL]x‘(_ oLg-uc.c{ closs

clsgvame €

'Y' fﬂ)—l& g;mdlyg / J_n%a gl‘VL(Jllvw
- gféji' ?viym}#u‘sm - WLQU\ @ fofn-{e} oJ« Rarent clqu 'fng ew;ls uf

Diating 4o differens chil clss liccts o b—um*r'me.Cv(ynam-'c L""J"V\v),
- i‘lkb BIIAJ“%&] iéﬁé%‘—— \Aal\eh the fayendt clase uko dw s 4he M”-'(""W‘
JWM she hild c[asj

" ergument
A’ LGWLAO. ﬁLMC‘fA’m : //’)
%ﬂ (EXQW\(".Q,): MQ%“{IQS\QN}QP msS = /‘w -7 vue-tlmlééaf}; >
Y

"

fié{z/_ﬁi O)ﬂuw@wﬁ %9

944 a)@;m%{% : (stflgdﬂwe Cdb, els =2 { methal 173'73 j)

Gewzh'c C\OSS 6% f@éﬂ ﬁa)
Bounolfﬂg .
4 A Generic class La«le}#ﬂbi&ffl\j oy namber :0[gorameters = bl clesy Semple < T, h>f

4 DBAA extends [super BB Yoy word FebeH BAES ol re
<7 extends RootClass 2 = ."Lﬁ'&m 'i?o:,&d.c.és ‘ﬁs vifes
AR 2 T ectends Qost Class & Piaze 7° 24 SR Roexdess 4o P2z 49 gl

LT super L*eee»-) ?ﬁ'i'ﬁ\ Tnteger, Numbeyr |, Olbieck 8§ —2 lowpr bound
=2 bouding 3380, MEFAGAETIN wethod body b, TG AL bownd 54 closs 54
wethod

*,ﬁ,_.‘f inheyi tance closs B:‘ﬁfl —Eifé,%ﬁi:
A4 2 A2 BEBE, AntEE A4THA dely quied BET AV nethal LS
& Povide 49 fﬂfpfkfv% e

Mechod header i—'ﬁg%_ extend , A s, FiaHf method l\e“gley;gf»f;
2 ow F)‘\’eﬁ"w\; TAY conctructor , mateto- B9 header & ZH°
thow freption , 124, GTES thows new - ') %, £4
9

+ Accessor 84 returnrigre I voil

@ Owxide
$. Q‘lu.tt[S — M'T l?ooleum)' 4akes M(O'Ojec-& ~)

Lo instance c:[ﬁé‘fé \%

t . comfare o = BT ik 5 4akec in Ceanient Dhiect A)

+ . Clonec) {
*%ﬁié ~T ;z‘é}é cubbene obiet - Cu»en{ bol = wull
* ——‘T ‘ﬂf\'f/(n-(r.',\ N "Qd { 7 ConStructor

L= new Cupent (¢~~~)5
Catch € Bection e)
Yetuin anJ‘ 3
Yefubin)_oLJ‘ j

\ * LeSuigy =7 KA -F String

LYk Jawon
Frenx Driven :15ud 524008 event 3355043% | Pen JuAR44

-i"To }esfoml to on Qent — attach o Evewt Hwoue‘. DLJQ,,-(4w companen—

4 GuLl Gwetructn B - Aw T C Absvact Window Tl)
\
= - JGqu.Swivﬁ
(Hias 4fiHR, Atz Rl BT, 2 y
a:ﬂ_g“v"“\j ¢ Jave.£X

O Swing s Jepreciated now

{@ Jowafx, woles are dancier omd 69*7/"“" bettor than iy awtrols.

@ Jwalx hes o l"’ﬂe" ["Q‘ Jen,*bwbe& 1}5‘* megl i Mﬂﬂt‘fk\a‘h'm M:l fltw!nck +han
SW.‘-\c’ clnes

\@ 4“’;17 was develogesd vosdly o enterprise [busmess use , not fov poronal use
ol Coktainly et - wobile devices

¥ ,CSS \-[\‘\Q -2 GestoJlﬂ S‘Ble sl\ee‘t, “okin Y ‘tlr!b Scene “S"U csc S‘tjl& SfECllq[\\CG‘(l'bvl
én +he wiwolow, (Nd have + k.avz e)

+* funL o‘a\]ec{: [N ?lﬂf!’- + ?lue- gour nedes

© Border Tane

(Tur)
l“ﬂmd%ﬁ&ij‘.
¥y —2
Oefl) center) (Righ)
(gw‘kfovv\)

ASi Je - CoM h\heu‘t
Padding ~_

Margin —*

H
Right Bottom «—— Border

¢ AV\CLDV fanQ

'CD‘MfoneV\f cre omAMﬂrEcl ot o S?eClJ\erL ol\Hume -{VM the QAO'E W[‘{'IAE fane
wing the stutlc wechods - satic v szttt i St wtiey =2 "‘ toels oS o elitnce

;ﬁc‘m £he
border 3](
the gne n

— when ch@;\‘, sze of the winbw, e wade clonges O(IexL:[d.jé’gﬁ?

* FIOW fmﬁ&
- Ples childien i Hhe fene jn the order in which -ELe\y ave odded V['D"‘“ left
o right Chy defeult) | .‘Q[the oymlble shee & dll, de childien whop cvound.

- when re-gi2 g the wi»dou/);} the amilble shee & dull, the childien w\'uj
(),'hwd.

'*9"% \;ltw fone ‘J%Rﬂ 1‘5\%3‘6‘ Orentotion . VE‘RTICAL{%% 2 {‘ﬁé chillve. 41 QHE ;J

fottom | A Botomn T
gotiom L Fntrom b
Bottomn 3 U Bationa] J/

Bt M Bottow¥

Orientoton. HORIZANTAL G ¢

fottomn | —> Botowm 2 D
Gttom 3 — ftaom %5
B gsttoma I —7 emlm\b
@‘b\m\ a —> Bttw @

o ##
jf Grid Tone — " Hordest ane ™
\/\m
- T weel 4 choose which fstm 5. ke a)—frl dsu'" uée Jo} Jow camponent
- B3I EEL B I R comprent 2EZE), B4 61T 2 LPES 9] comrent
EPIA L
- (on aolA guys LQ'bwe&M ows /C“,,LLMMAS u&‘@ .setl—lgu?() /.sethoec o
Cet g« 75 on €he outside OJ “le Romne uSl‘Ad . Set foolnll'vUC)

- \,e-S\}.wﬂ - stulle e clmv@'@ compment s 2@, yt,[u-e(\.,@\(f A matnbu'a

HBax andh Ugox Tanes
*a«afﬁ S‘U‘L«‘\‘[\A{ \;[OM) ne mlrof«?fvx\ﬁ");ﬁ ’-)‘?’"“%% HW fane > %\‘i ;éi}j
“REH L kel [bt 0 Areglin 8801 Ble v CHuizowtely [vestied)

HFQX .

go‘H’m | gaﬂ‘&m\ 2 \gc‘(‘{'avw_s
—

NO WL“T akw W&(
VBx

Botom |
Bsttom L L

Pstowm 3

& g‘h«d‘?ﬁmg (doesnt need 4hic ane)
“ Tle comerolsCrodes) on 6P h{ eoch other [k a deg Q][cordls

) T"lefav\ '3

- Awter gHd Leged leyowt, but simpler on CGrid Tane , woe Jike
ﬂnw fanQ.
= CBY\&VULS ore lg(‘A Alawm " «he D)—JQ\, tn .V.,L.IQL\ {Lq ole QAJQJ{.

O'qu-k clasg - ‘?ul-]\'c obétrac c[ass neme (5 {
0166*”@{ mechold o Rllie OLS‘WGLH returntype clese nouma. (chgs) 3
-T Glener ic class = allic clgna~e < T2 g

Gene-ic we-thod ;
Tlic 2T extends -~ & - % -+ 27 Febate clssrame Lavge) §

§

HAND IN
Answers Are

Recorded on
Question Paper

QUEEN'S UNIVERSITY
SCHOOL OF COMPUTING

CISC124, FALL TERM, 2017
FINAL EXAMINATION
9am to Noon, 8 DECEMBER 2017

Instructor: Alan McLeod

If the instructor is unavailable in the examination room and if doubt exists as to the interpretation
of any problem, the candidate is urged to submit with the answer paper a clear statement of any
assumptions made.

Proctors are unable to respond to queries about the interpretation of exam questions. Do your
best to answer exam questions as written.

Please write your answers in the boxes provided. Extra space is available on the last page of the
exam. The back of any page can be used for rough work. Please do not take the exam apart!
This exam is three hours long and refers exclusively to the use of the Java language. Comments
are not required in the code you write. For full marks, code must be efficient as well as correct.

This is a closed book exam. No computers or calculators are allowed.

Student Number: }oeLqu}
Problem 1: /30 Problem 4: /50
Problem 2: /10 Problem 5: /10
Problem 3: /20

TOTAL: /120

This material is copyrighted and is for the sole use of students registered in CISC124 and writing this exam. This
material shall not be distributed or disseminated. Failure to abide by these conditions is a breach of copyright and may
also constitute a breach of academic integrity under the University Senate's Academic Integrity Policy Statement.

Student Number: Page 2 of 22

Problem 1) [30 marks]

Mark each of the following as True or False using “T” or “F”:

e

bbb bbbk b bk R

Java was initially designed to be used to construct stand-alone applications. M

Java is case-sensitive. /

A Java byte code file is already in machine language ready to be executed by the (-
processor.

Variables declared inside a method are available to any other methods in the same class.
A variable declared outside a class is available to any class in the same packgge’.

Only static methods can be declared outside a class definition\/

Overloaded methods share the same name and parameter list, but difje/by return type.
A for/each loop can be used to re-assign array elements. /

Addition and subtraction have higher precedence than multiplication and division.

The operator, %, provides floor division. M

{ and } are used to control precedence in an expression. L/

String objects are immutable. \/

ArrayList<T> objects are immutable. { \/

Primitive type values are passed by reference into methM

An exception class must implement the Exception interfa

Student Number: Page 3 of 22

Problem 1, Cont.)

~ b P s e

\

—

Bk bl b

Every instance of a class will have its own copy of a static me\%
Non-final attributes should be declared private. \/
A method declared as “final” is designed to be overri(ﬂgie{

Constructors cannot be overloaded. L/

v

The return type of a constructor is voi
A mutator should also return the value that is being\:ggned to an attribute.
Only constructors can throw exceptions. M

A class header must contain a “throws” decoraﬂz%any f the methods in that class throw
exceptions. “

An immutable class could have private mutators;
For an equals method to override the Object.equals() method it must\a/azpta parameter
of type Object.

For the compareTo method to override the Object.compareTo() method it must accept a
parameter of type Object. {

The standard toString method is a void method. \/

Private attributes and methods are also inherited from @})e/rent class.

The extends keyword is used in a class header to impleynent multiple interfaces.

A class can extend more than one parent class.

Student Number: Page 4 of 22

Problem 1, Cont.)

N N N EN N ol e N N s

Optimal hierarchy construction encourages attribute re-declaration.

Early binding is satisfied as a program is running. /

Polymorphism means that a base class type can be used as%ameter type for child
class arguments.

If class Child extends class Parent then ArrayList<Parent> (ﬁ.a%e a parent class for
ArrayList<Child>.

A well-designed inheritance structure will be extensible. /

Elements can be added to and removed from an Enumerated type after it has béen
declared.

The type T in a class declared as GenericClass<T> can be instantiated inside“the class.
Primitive types can be supplied as types to generic classes and methW
A generic method can be invoked without supplying a type within Wecause of type

inference.

A generic method can be invoked without using < > because of typg/inference.
A generic class can only be typed with a single type.
The use of a parameter of type Class<T> can be used to allow an instance of any Object

type to be supplied for the parameter. T

An interface that uses the @Functionallnterface annotation can have onte/m/two abstract
methods only.

A functional interface supplies the method signature for a lambda functiofi.

Any lambda function implementation can be replaced with an anonyma@ds class
implementation.

Student Number:

3> [bo= 02

Page 5 of 22

Problem 1, Cont.)

1
(

€

I P I N A

—

A generic interface cannot also be a functional interface. %)(

S

In Java versions 8 and 9 an interface can contain non-final attributes.
A lambda function can only be written for method signatures that have a singlg})éameter.

All JavaFX GUI classes are taken from the javax.swing package. K/

A stylesheet, a *.css file, can be used to modify the appeara ' single node in a
JavaFX window.

A stylesheet can also be used to attach events to nodes like buttoW
JavaFX contains node classes for charts like x-y plots. \/

The child nodes of a FlowPane container will always maintain jheir relative positions even
when the window using that pane is re-sized.

When using a GridPane, nodes can be added to any row, ccd% position in the pane in
any order.

A child node in an AnchorPane can only be anchored to one side\cy(e pane at a time.

—_
The controller *.java class is identified in the Main.java class in a JavaFX application. T

The @FXML annotation is used in the controller *.java class to ideniify attributes that have
fxid’s and need to be injected.

A font specified in the stylesheet file will override a font specified in the fxml file for the
same node in a JavaFX project.

Event listeners can only be added to nodes by using the fxml filv

A radio button must be part of a ToggleGroup object in order for pnly’one button in that
group to be selected at a time.

Student Number: Page 6 of 22

Problem 2) [10 marks]:
Answer the following in the space provided:

What is a “privacy leak’? Describe an example of when it would occur: ‘t’

Privacy leak hatpens when the contain that gou olonit went e
s]z\:ws Bns sut deows u?, sowmetwes & hottenn when o Alnke)l

?.D]\y\-&g 4 on ? y‘l Va{e C 1’@

What is the process of “automatic boxing”? Provide a single example of its use:

when we need e gsmef'/v"kj n on Generic closs , W&
A:)‘V\“E weed) inctantinte “t, de ags :'('Se(f il Lle[r o

nstanbinte (€

Name two advantages of coding with inheritance:

9 letter shuctur e

Why should all non-final class attributes be declared as “private”?

When we use non-final class attributes, the attribute is accessible for other people to change it,
when we declared it as private, people who wants to change it gotta go through the mutator
designed by designers which prevent the possible illegal input

Name two reasons why you would use JavaFX to build a GUI rather than swing:

Student Number: Page 7 of 22

Problem 3) [20 marks]

a) In the box provided below write a static method called “factorial” that calculates and returns the
factorial of an integer value supplied as an argument. The factorial of a number, n, is shown in
mathematical format as “n!”. It is calculated using the cumulative product as:

n=nxnm—-1)*n—2)*..x2x*1

The easiest way to prevent numeric overflow of this calculation is to calculate and return the
value as a douhle_ If the factorial method is supplied with an argument that is less than or equal
to 1, return 1.

st state deuble. Jacemial Cint swphed) €
—> 2 define g dabl
\j[cSupzlied =0) 2
S izt izw; i) f
vesd = reslek 1§
yeturn yesult

£ . .
! Sybtem.- owt> f’ﬁn&\u ' Nat \33Ct| ‘“f“(tj

Student Number: ﬁzz&.@ P) Page 8 of 22

Problem 3, Cont.) ’\' C il
Cﬁe. (XS W\qj

b) In the box provided below write a static method, to be included in the same class as the
method written for part a), called “combinations”. This method will be supplied with two integer
arguments which represent the size of a set of “things”, call it “all”, as well as the size of a sub-set
of “things” which could be called “some”. The number of possible combinations of “some” when
taken from “all” can be calculated using the formula:

all!
some! (all — some)!

numCombinations =

For example, there are six different combinations of two “things” when taken from a set of four
“things”. If the “things” are letters, you would have the set {A, B, C, D} for example. The possible
combinations of two letters would be: {A, B}, {A, C}, {A, D}, {B, C}, {B, D} and {C, D}. So, all is 4,
some is 2 and numCombinations would be 6.

As you can see, this formula involves the calculation of factorials, so your method should use the
method you wrote for part a). If either argument to combinations is less than 1 or if “some” is
greater than or equal to “all”, return 1. The combinations method should return a long type value.
Do not worry about upper limits for the argument values.

?\AL\,‘“C S“(n-&fa lo‘ﬂj C}ML{V\A’E\le\S C ;V\’& .SDMQ) ;:/H Ol“) g

\j C Some Z | | G-ll < |) ﬁu& iniﬁalj
deuble we

Yetuhn | L.

else E:F (Some 7 all)

vetur,, (L

else ¢
R e 3 Ry B e P e

fv\i—Eia.\ - C‘b"\j) <

Yetur-n N 1t l

]
§

Student Number: Page 9 of 22

Problem 3, Cont.) R’

¢) In the box provided on the next page write a static method, to be included in the same class as
the methods written for parts a) and b), called “makeArray”. The integer argument supplied to
makeArray will be the desired number of rows in the 2D array of type long that will be generated
and returned by the method. The returned array will contain the possible combination results
calculated using the method from part b). The row number will be the “all” argument and the
column number will be the “some” argument. Since you cannot make a proper calculation of
combinations for all array positions, the array must be a “ragged” array, where the number of
columns in a row will equal the row index number plus one.

Here is an example that shows the contents and structure of the array that would be returned by
makeArray if it was supplied the argument 12:

Col: (%] 1 2 3 4 5 6 7 8 9 106 11
Row ©: 1

Row 1: 1 1

Row 2: 1 2 1

Row 3: 1 3 3 1

Row 4: 1 4 6 4 1

Row 5: 1 5 10 10 5 1

Row 6: 1 6 15 20 15 6 1

Row 7: 1 7 21 35 35 21 7 1

Row 8: 1 8 28 56 70 56 28 8 1

Row 9: 1 9 36 84 126 126 84 36 9 1

Row 10: 1 10 45 120 210 252 210 120 45 10 1

Row 11: 1 11 55 165 330 462 462 330 165 55 11 1

Row and column numbers in the array have been added to the printout shown above for clarity —
they are not part of the contents of the array. For simplicity, it is assumed that there is one way to
obtain zero elements from any set, regardless of its size. A small box has been drawn around the
result used as an example in part b) for the 2 letters taken from a set of 4 letters.

If makeArray is supplied with an argument that is less than 1, it can just return null.

Student Number: Page 10 of 22

Problem 3c, Cont.)

fmb\f& gatic lowd ol malle Atl—f‘d Cink size) {
g (622 21

Yetarn null
lowyC] L1 debay = Vew brg [sze] [e22])
it yow, Golemn
;&v\— (Fow =0 3 Frow = 'bl\eAH«'»\']_ lengthe 5 row 4t)
Ja» CColumn 20 5 colowmn 2 +helbssy Dow]) . buagth

J‘ (\'oIhHMm -("t)

’a\eA'H'“\-] D"ow] L(‘tl%w\n] il CDNL;na-h'aV\ C e)C‘o,,lmwj)—

Fretubia Ahe A H'g:']

Student Number: Page 11 of 22

Problem 4) [50 marks]
For this problem you need to write four classes, called “lllegalQil”, “Oil”, “CookingQil” and
“MotorQil”.

lllegalOil will be the exception class used by the other three. lllegalOil only needs the one
constructor that accepts a String type message.

Oil will be the base class for CookingQil and MotorOil. Here are the attributes that will be used in
the hierarchy:

- Density, a float, must lie between 0.8 and 1.0 g/cc (“grams per cubic cm.”) inclusive.

- Type, a String. It cannot be null or of zero length.

- Viscosity, a float, in Pa.s (“Pascal seconds”). For cooking oils this must lie between 0.01
and 0.1 inclusive. For motor oils this value must lie between 0.01 and 1.5 inclusive.
Cooking oils only store a single value for viscosity, which would be the viscosity at room
temperature. A motor oil will store viscosities in an array of float of any non-zero size,
where the viscosities have been measured between 0 and 100 deg. C.

- Saturated Fat Content, an int. Only for cooking oils. A percent value that must lie between
0 and 100 inclusive.

- Grade, a String. Only for motor oils. It would look like “10W30”. The number before the
“W” (the winter grade) must be 0, 5, 10, 15 or 20. The number after the “W” (the summer
grade) must be 8, 12, 16, 20, 30, 40 or 50.

All classes must be immutable. You may write any accessors that you need. Cgonstructors must
throw the exception object if any attempt is made to create an object with illegal argument(s).

Yom_J must also w;i\t/e\ggy_glf, cpmgareTo anq clgqe methods. Equal_ity, for the equals method, is
defined as the Type string being the same, ignoring case. Comparison, for the compareTo
method, is based only on density. Each concrete class must also have a clone() method.

The demonstration code on the next page illustrates the polymorphic behavior of the hierarchy
and how constructors are invoked. When getViscosity() is invoked on a MotorOil object it returns
the average viscosity calculated from the array of values in the object.

You may find some or all of the following methods useful:

aString.charAt(posl) //returns the char at position posl in aString.
aString.length() //returns the number of characters in aString.
aString.index0f(searchString) //returns the location of searchString in
//aString, or -1 if it is not found.
aString.substring(posl, pos2) //returns the sub-string from aString
//starting at location posl and going to
//location pos2-1.
Integer.parselnt(aString) //Attempts to convert aString to an int value,
//throwing a NumberFormatException if it cannot do
//so.
Character.isDigit(aChar) //Returns true if aChar is a digit.

Student Number:

Page 12 of 22

Problem 4, Cont.)

Demonstration code:

import java.util.Arraylist;

public class TestOils {

public static void main(String[] args) {
// Density units are g/cc and viscosity values are in Pa.s
// Fake array values, used for all motor oils:
float[] testv = {1.1F, ©.98F, ©.75F, 0.63F, 0.31F, 0.27F, 0.11F};
ArrayList<0il> db = new ArraylList<>();
// All argument values are legal:

try {
//

db.
db.
db.

//

db.
db.

add(new
add(new
add(new

add(new
add(new

density, type, viscosity, % saturated fats
Cooking0il(@.911F, "Olive 0il", ©.034F, 14));
Cooking0il(@.925F, "Coconut 0il", ©.080F, 92));
Cooking0il(@.920F, "Peanut 0il", ©.04F, 18));

density, type, viscosities, grade
Motor0il(©.888F, "Multi-grade", testVv, "10W30"));
Motor0il(@.891F, "Multi-grade", testV, "5W16"));

} catch (Illegal0Oil io) {
System.out.println(io.getMessage());

}
for (0il

element :

db) {

System.out.println(element);
System.out.println("Viscosity = " + String.format("%.3f",

}

} // end main

} // end TestOils
/* OUTPUT:

element.getViscosity()) + " Pa.s\n");

Cooking oil, type: Olive 0il, density: 0.911 g/cc, 14% saturated fat content.
Viscosity = 0.034 Pa.s

Cooking oil, type: Coconut 0il, density: ©0.925 g/cc, 92% saturated fat content.
Viscosity = 0.080 Pa.s

Cooking oil, type: Peanut 0il, density: ©.92 g/cc, 18% saturated fat content.
Viscosity = 0.040 Pa.s

Motor oil, type: Multi-grade, density: 0.888 g/cc, grade: 10W30.
Viscosity = 0.593 Pa.s

Motor oil, type: Multi-grade, density: 0.891 g/cc, grade: 5W16.
Viscosity = 0.593 Pa.s

*/

Student Number: Page 13 of 22

Problem 4, Cont.
) e}{e WA}

The exception class, lllegalQil: /4

?w\;\fc, c':..ss I"ed“, Oll Qx{e@ Exceg—h‘av\ i

?‘Kl)ll\ C 1\\2@0,1 DI[(sth hy messuyR) {'
Sufer C mesage)

J

Student Number: Page 14 of 22

Problem 4, Cont.) 7.\\%4\9\.

The base class, Oil: //7

Mic dass Dl Ahiow 1“Q8al 3[[7& %-
A S SN

THvate. &\aw& JM:+JJ

FHiate Q&t\j ’Ed QC‘)
alic ol wow Ilkgal Ol (foet den, Swing < J {
gg\agv\sk—e\] C dew) 3
et fe (X))
3 \
Qvate Vo§(1 gt Aeu.s\‘*\] ((ﬂoa{ cNum) throw I.\k’(yula {
if ((O.NUW\ A 0-\3) () Cal\luw\) I« 0))
thows new Mo DI (' Four it S e legal 1) 3

el
<hic . olﬁms\‘-a = aNum)

J

Tk vod cet dgie C ering oStk) thiow 3“?0“' ol {
 (Coser == nai)y Cosor-logdh=0)))
throws new]“%ulbil (Y ‘our gt S Mleﬁ‘t')J’

ele

&L\Ts. ‘%?Q_ - 0.5{'4’)

/Qé\'&‘éé’@ﬁi i'ﬂ% ,é%éﬁ get Vis L

Student Number: Page 15 of 22

Problem 4, Cont.) " ﬁ:x%_vw\l
L RRe
salve
The base class, Oil, continued;i oL CesS

e (@ et ec » {

!
i ¢ ae,{Dev\s\‘-edc) §

Yetan 4hz - olemsx‘{d 5

5
® Owevide
T*u < lDWleaV\ Qqua[s C OLJ on DL:;EL,{) {
‘} (onOL:leC‘E ywstance O\][0({) { d‘.
i CanDblect . geeTore . equals igovecare (- ffe))
Hturn -Ev-ue_)‘

e\Q(
yefubn 'Ealse_)'

\¢
e retuin {“‘Sejj

® Jvenide) |
g\’u)p\fc, nt caw‘fqyg,‘o (Ot[od«e\r()nl) {

‘b retubVal)

iJ[(M“L" abs C otheDil . %A Densty = <hic. Vessdy) <47)
yeturn)

ele |
Feturn Vol = Cone) othaDil . ot Densiy = thic. Dewsty) 5

-

betun votura Vol

- % gy o reten |
N 14 BEE A, B
j e L vetwn -|

Student Number: Page 16 of 22

The CookingOQil class: 7<
J N\

Problem 4, Cont.)

ic clage Cookiny Orl @ ON :Elnlmw l\legul Ol {
Dvate (P%a-(Vis Cosi‘EJ)‘

Srvae wb ot

?VL‘)\‘C- Coo\lt"\j ol (\‘pw'{ Je“’ gth‘:] T o H“"{ vis
|“t'\{ 0(0,) ’&Lvow j,"eaul OI, {
Sufer C °l‘3"l))

Sek \J1s C vi©)
St fat Cq[u))

e voll et Vis € dhet ontlun) o gl O 6

dt((o\Num 290-0) J Il (atNum > [.\j‘J)

Gt new Tlege| DI C Nt (egul)5

e\SQ N .
Ahis . V(.SCQS\‘(O == QMHVV\}

$

vk voil cetfat Cink aNuw) thow lgal i 1

“:[Coapum 2o)t Calam > [os) .
tupes new Tllegel O (FN lol 2

else
<his . ;‘a{ < aNum
@ overite
wllic Conh‘w\c’ ol clone ¢)l <
Cookiny Dil oNewave = Nall ’9&:““&3)
e V!
aich new Clersd

[NQ\N one -

caichn € g E;}Ny%) nal f g

bt

Student Number: Page 17 of 22

Problem 4, Cont.)
The MotorOQil class: m Pu
alic coss Motm Ol (@ctewds Ol [thow Tl DT ¢
Privat@ <]:lo«u', 1 \seesiy Aw«d » \/
qrivd Goring grode | Va
cdlic. Mote 001 (floet dons Sty 1, heeld Vich , Stiry g)
hiow J/_Heaul O‘l i

sier (den, 4R);
set Vis I’\'H’O‘\'j C vich) 5
set Girede (gre)

J

Frivate void QQ{\/;SAHTJ ($hotl] Onm"’qj) ew 1"%9«'3.‘
{{ (quHad-(ev\atlr\ = 0)
Ao vew l“eaulbfl C (WINd l@dql‘))“
0&\, (iz=0 3 124 qAAwaJ.(eu@ﬂdﬂj £)

F(Con Array L] 220 3 il (oaRrveypi] 2)
Ao vew :L“egulo:l (* NS¢ [edq *))-j

el . viscosity by = onhriay.

J

Student Number: Page 18 of 22

Problem 4, Cont.)

The MotorQil class, continued:

e (ord et Grede (String oftr) ahow Tlegdl ol {
UL IS
Chhing 3R, Past
gos~ aSt-, {AJQKO({(")
i;[@ = -1 D)
“hrow new 1“23‘*' Q€ Aot [egql “)
Fres oScr. Subting (o, P8I
Fost = aStr . &Ls-th‘n@ C 708, 0 Stk . [enyth))
d ¢ e -equal jgrve w0 DU

/~
Va%

/\./

J

@ Dvew.'cle
Quu ic Mestor Q\\ clxme C J {_

Mot Ol conewone = pwll

%Vj $: .
orowme = rew(Clontty, type ViscsifyAresy

8)—&(}8)/‘,

Cotch (Tlege| Ol @)
vetuw vmll)'

3

Student Number: Page 19 of 22

Problem 5) [10 marks]
Here is a complete JavaF X program, starting below and ending on the next page:
package application;

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.control.Button;
import javafx.scene.control.Llabel;
import javafx.scene.layout.AnchorPane;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;

public class Main extends Application {
@Override
public void start(Stage primaryStage) {
try {
AnchorPane root = new AnchorPane(); v
HBox hPane = new HBox(10);
VBox vPane = new VBox(190);

Button buttonl = new Button("Button 1");
Button button2 = new Button("Button 2");
Button button3 = new Button("Button 3");
Button button4 = new Button("Button 4");
Button button5 = new Button("Button 5");

Label labell = new Label("Label 1");
Label label2 = new Label("Label 2");
Label label3 = new Label("Label 3");
Label label4 = new Label("Label 4");
Label label5 = new Label("Label 5"); v/
hPane.getChildren().addAll(button4»/labeTf: buttonT{'buttonS);
vPane.getChildren().addAll(label5, button2, label2, button3);
AnchorPane.setTopAnchor (hPane, 10.0);
AnchorPane.setRightAnchor(vPane, 10.0);
AnchorPane.setBottomAnchor(label3, 10.9);
AnchorPane.setLeftAnchor(label3, 10.9);
AnchorPane.setBottomAnchor(label4, 10.0);
AnchorPane.setRightAnchor(label4, 10.90);
root.getChildren().addAll(hPane, vPane, label3, label4);
Scene scene = new Scene(root, 600, 300);
scene.getStylesheets().add(getClass().getResource("application.css").toExternalForm());

primaryStage.setScene(scene);
primaryStage.setTitle("Problem 5");
primaryStage.show();

} catch(Exception e) {
e.printStackTrace();

}

} // end start

Student Number: Page 20 of 22

public static void main(String[] args) {
Launch(args);
} // end main

} // end Main.java

Problem 5, Cont.)

a) Using the empty window shown below, sketch the appearance of this window as it appears
when run. Draw a button as text inside a drawn rectangle and a label as just text. Don’t worry
about imitating fonts or even drawing straight lines. Concentrate on getting the relative positions
of buttons and labels and their associated text correct. Note that the pane objects used do not
display their borders. A ten pixel gap would be about 2mm on this drawing.

You are not given the contents of the stylesheet, but you don’t need to see this stuff — the
contents of this file will not affect the layout of the nodes and the text they contain.

n' Troblem ¢ - = 2
\O\A‘E‘(OV\ L[),&Lel l L\A‘t'{m \ \gu—t*bv\ g}]—GLQI J
A~

/\/

b\rﬁ{m« D

oy
buttn 3

fukel 4)
(N

A4

Jobel 3

\9«6{3\/\4 \/;9\/‘/{/

Student Number: Page 21 of 22

Problem 5, Cont.)

b) A Label owns a method called setText(String arg) that can be used to change the text
displayed in a Label to the String contained in arg. A Button owns a method called
setOnAction(EventHandler<ActionEvent> arg) that can be used to attach an event listener to a
Button. The functional interface EventHandler<ActionEvent> contains a single abstract method
called “handle” with the following signature:

void handle(ActionEvent event);

In the box below, write code that uses a lambda function to add an event listener to the button1
node that changes the text in all of the labels in the VBox and HBox panes to an empty String.

Write just the code that you would add to the code shown above. Do not repeat any of the code
shown above.

butkon | . %2+ On Acton (event — {
el 1o setText ¢)

L obe| 1 - ok lext (" "))
Lebe| 2 et lext €7 ")

KRE

Student Number: Page 22 of 22

(extra page)

CISC 124

HAND IN
Answers Are

Recorded on
Question Paper

QUEEN'S UNIVERSITY
SCHOOL OF COMPUTING

CISC124, FALL TERM, 2016
FINAL EXAMINATION
7pm to 10pm, 19 DECEMBER 2016

Instructor: Alan McLeod

If the instructor is unavailable in the examination room and if doubt exists as to the interpretation
of any problem, the candidate is urged to submit with the answer paper a clear statement of any
assumptions made.

Proctors are unable to respond to queries about the interpretation of exam questions. Do your
best to answer exam questions as written.

Please write your answers in the boxes provided. Extra space is available on the last page of the
exam. The back of any page can be used for rough work. Please do not take the exam apart!
This exam is three hours long and refers exclusively to the use of the Java language. Comments
are not required in the code you write. For full marks, code must be efficient as well as correct.

This is a closed book exam. No computers or calculators are allowed.

Student Number:

Problem 1: /30 Problem 4: /40

Problem 2: /10 Problem 5: /10

Problem 3: /20 Problem 6: /10
TOTAL: /120

This material is copyrighted and is for the sole use of students registered in CISC124 and writing this exam. This
material shall not be distributed or disseminated. Failure to abide by these conditions is a breach of copyright and may
also constitute a breach of academic integrity under the University Senate's Academic Integrity Policy Statement.

Student Number: Page 2 of 19

Problem 1) [30 marks]
Mark each of the following as True or False using “T” or “F”:

T_ A “for each” loop can visit every element in an array. v

Normal for loops cannot be used with ArrayList<T> collections. v

A “chained if” construct uses a switch statement. V4

Java switch statements can be used to compare Strings for equality. (/

The Boolean comparators < and > can be used in the case statements inside a switch l/
statement construct.

A counter variable declared inside a for loop statement is scoped within the loop only. \/
Variables can be declared outside a class. \/

A static variable declared inside a method is known to all other methods in the same class. V
A method declared as “final” cannot be overridden. \/

A class is declared “final” if it contains one or more abstract methods. \/

A static method declared in another class can be invoked without naming that other c\las{

NN\~

The main method can invoke static methods in the same glass directly without needing to
instantiate the class that it belongs to. \/

A method’s parameter list can contain default arguments. \/

A method that does not return anything, like main, does not need to state E\y/return type.

B N S Ay S S B T T

A method declared “private” can be invoked in another class from an instancqyé class
that owns that method.

Student Number: Page 3 of 19

Problem 1, Cont.)

An abstract method is declared using an empty set of { } (curly braces). _/

A child class that extends an abstract parent class must implement all inherited abstrac
methods unless it is to be abstract itself.

An abstract class can only contain abstract methods. \/

Abstract methods cannot have a return type. \/

An abstract class cannot be instantiated. D\ T

An abstract class must have an empty, default constructor. \/

An interface can contain non-final attributes. \/

A class can implement more than one interface. \/
A child class can extend more than one parent class. \-/

An interface can be used as a type when declaring variables. \/

A child class’ constructor must invoke the parent class’ constructor as the firstline of code
in the child class’ constructor.

Constructors cannot be overloaded in the same class. /

The return type of a constructor is “void”. % J

Polymorphism is also referred to as “dynamic binding”. \/
e e e

‘/i\ '/q J,v\ '/vx ‘A ‘/4\ '/\\ ‘/\ '/\\ }’V\ {/\\ }/V\ 1’\\ ‘A '/:\

A class cannot extend another class and implement an interface at the same time/

Student Number: Page 4 of 19

Problem 1, Cont.)

/’
(_ In order to override the equals method inherited fror\nj)bject, an equals method should
accept an Object as a parameter.

i The compareTo method should return a Boolean true/false result. \/

-

The toString method in an object is automatically invoked whenever a String 7§ l
representation of the object is required.

r:I'he clone method works properly when invoked from a pointer of type 2D arrM

An immutable object contains public mutators for every private attr{b}é
An ArrayList<T> collection is a mutable object. 4

o~ "~ ~—
If Number is a parent class for Double, then ArrayList<l\\lykér> can be a parent class type

for objects of type ArrayList<Double>.

Collection<?> can be a Mfor any object of type ArrayList<T>. 5& ' T
Generic methods must be contained in generic classes. \/
The use of syntax like “<T extends MyClass>" in the context of a generic method or class

ensures that objects of type T will have access to methods declared in MyClass. K

The super keyword is used to supply a reference to the current object from inside an
instance of that object. \/

An ArrayList<Double> object can be supplied to a parameter of type ArrayList<? extends
Number> when invoking a generic method. x%

A generic class can be declared to use more than one generic type. \./

The Comparable<T> interface specifies the method header for the equals method. ﬁlt

I B B N P

A “Functional Interface” used with lambda functions can contain more than one abstract
method.

—

A

—\

A\

Student Number: Az /g 0 — O ‘% Page 5 of 19

Problem 1, Cont.)

R P R P A e NN R S

—_—

JavaFX requires the use of a *.fxml file for component layout and sizing. ’7< {/
The stylesheet, or *.css file, can be used to attach an event listener to a JavaFX noQQ./
An event listener must be added to a JavaF X node each time the user clicks on it. rf

A stylesheet, or *.css file, can be used to configure the appearance of all nodes of e/
certain type or just a single node of that type.

A change listener will only respond when a user clicks on a component. ><
All event listener types will only respond to mouse actions such as button clicks. \/

The “@FXML” annotation is used in a controller file to identify pieces of Java codeMill
need to be injected after the fxml file is processed.

Nodes can be created and named in the fxml file and those names are available W
Java controller file, provided the fxml file knows the name of the controller file.

Fonts and font sizes can only be assigned in the fxml file. \/
An EventListener interface is a Functional Interface. ‘* 7§
An EventListener can be implemented using a lambda function or an anonymous class.\/%/
A TextField node can be configured so that the user cannot change the text shown in the f

node.

The Pane class does not contain a layout manager algorithm, but uses absolute sizian/and GP
positioning instead.

The BorderPane class breaks a region into five parts. 4Q /

Nodes in a FlowPane can change their relative positions if the pane’s size changes. %

Student Number: Page 6 of 19

Problem 2) [10 marks]:
Answer the following in the space provided:

What is the process of “type inference” in the context of the use of generic methods and classes?

How would you bound a generic type when declaring a generic class or method?

What is the advantage of using a generic method over a method that is typed to use Objects
instead?

Name one advantage of using JavaFX over Swing for GUI construction.

What is the process of “early binding” and when does it happen?

Student Number: Page 7 of 19

)“J £ime o Hhost)

Problem 3) [20 marks]

a) Write a static method called “gcd” that accepts two int values as arguments and then returns
the number that is the greatest common divisor of the two supplied numbers. A divisor is a
number that divides another number without any remainder. The greatest common divisor or
“GCD” is the largest int value that divides two numbers evenly. For example, if the gcd method
was supplied with the values 10 and 25 it would return 5. If it was supplied with 43 and 100 it
would return 1. If it was supplied with 10 and 100 it would return 10. You can assume that the
method will only be supplied with integer values that are greater than zero.

QWU«‘C_ stic nK &:JC wt &Nuw\) tn< L(\lumJ ({,

wt Ccount , J?v;Sb)—)'

ii Cahluw\ < LNWM)

Count = &“uwx)‘

else 2=
Cownt = LN -7
gor Ciz 1y :@c«mﬁ RAPR
f Cotlum’s 0 20 €& bNunbi=?)

divissy =1)

Yetabn divico) |

S

Student Number: Page 8 of 19

Problem 3, Cont)

b) Write a static method called “gcdArray” that accepts two 1D arrays of type int as arguments. If
either array is empty (of zero size), null, or if they have different sizes, return null. Otherwise this
method will return an array of the greatest common divisors of the two numbers from each array
in the equivalent index positions. Use the gcd method you wrote for Part a). If either number in
the same index location is less than one, skip that index position. This means that the returned
array will be smaller than the supplied arrays if any of the values in either array is less than one.

For example, if the gcdArray method was supplied with the two arrays:

{4, -1, 10, 30, 27, 0, 100, 55}
{0, 10, 30, 6, 18, 20, 32, -2}

it would return the array:

{10, 6) 9) 4}

?U»B]:C S‘td\,‘&l‘c {n{l:-] %]cd,A\’t'“\'l (\\w&r,] (k) fhtl: J BJ E
WeC]l dwisovotry = mew iae [&-leggth] |

it count =o)

J C @ leageh =0 11 (blengeh =0 1| (o =nall) 1l (benal
i (l (a.lmgﬂ:),.leﬁ)

yetan nul| 5

3[1,), (=05 iz alwgeh ; i+€)
Cori1=0) 1 CbLT =)
Continug
else §

de

Count *=133
Yok divisor o2

VESO\—GHP‘{] L(‘D(U\‘E] - 3C(}~C &Ei]/ JDL;]))'

Student Number: Page 9 of 19

Problem 4) [40 marks]

For this problem you need to write four classes, called “Battery”, “SingleUse”, “Rechargeable” and
“‘BadBattery”. Both SingleUse and Rechargeable extend Battery. BadBattery is an exception
class used by the other three.

A SingleUse object is described by the following attributes:

e name — The name of the battery as a String, such as “Alkaline D”. The string cannot be
empty.

e voltage — The nominal operating voltage of the battery in volts as a double, which would be
1.5 V for the battery named above, for example. The voltage must be greater than zero
and less than 50.

e cost — The estimated cost of the battery in units of $ per kW-hr as a double. This value is
estimated to be $100 per kW-hr (“kilowatt hour”), for the Alkaline D battery, for example.
The value must lie between 1 and 30,000.

e capacity — The estimated battery capacity in units of AH or “Amp Hours” as a double. For
example a capacity of 10 AH means that a battery could deliver 10 amps for one hour or 1
amp for 10 hours before running dry. An Alkaline D battery has an estimated capacity of 8
AH, for example. The value must lie between 0.001 and 500.

A Rechargeable object is described by all of the above attributes plus:

e numCharges — An estimate of the number of possible charge cycles of the battery as an
int. For example, it is estimated that a NiCad rechargeable battery can be recharged 500
times. This value must lie between 2 and 10,000.

All attributes must be declared private. The base Battery class must contain only the name,
voltage and cost attributes which should not be re-declared in either of the child classes.

On the next page is some code in a main method in some other class that uses these four
classes, along with the output of this code. You can see that polymorphism is used to invoke the
toString and getLifetimeCost methods. The sample output shows the format of the String
returned by the toString method. The getLifetimeCost method estimates and returns the per use
cost of the battery over the entire lifetime of the battery. This is defined as:

cost * voltage * capacity / (1000 * numUses)

The “1000” is to convert Watt-hours to kWatt-hours. This is probably a pretty bogus definition, but
it is simple and this is the calculation that you must code into your implementations of the
getlLifetimeCost method. Of course, numUses is one for a SingleUse object.

You can see that the base class Battery cannot implement the getLifetimeCost method, but it
must contain this method in some form in order for polymorphism to work. Write the exception
class first followed by Battery and then the other two. No other classes are required. Write the
just the minimum set of methods needed. All classes are to be immutable.

Student Number: Page 10 of 19

Problem 4, Cont.)
Demonstration code
import java.util.Arraylist;
public class TestBatteries {
public static void main(String[] args) {

ArrayList<Battery> bats = new ArraylList<>();

try {
bats.add(new SingleUse("Alkaline D", 1.5, 100, 8.0));

bats.add(new SingleUse("Alkaline 9V", 9.0, 600, 0.4));
bats.add(new SingleUse("Silver Oxide Button", 1.55, 18000, 0.15));
bats.add(new Rechargeable("Lead Acid", 2.1, 100, 225, 500));
bats.add(new Rechargeable("NiCad", 1.2, 1000, 1.0, 500));
bats.add(new Rechargeable("LiPo", 3.2, 350, 2.2, 1000));

} catch (BadBattery e) {
// All battery data used above is legal.
System.err.println("Should not get here...");

}

for (Battery bat : bats) {
System.out.print(bat);
System.out.printf(", cost per use: $%.3f\n",bat.getLifetimeCost());

}

} // end main

} // end TestBatteries

/* OUTPUT:

Alkaline D single use battery, cost per use: $1.200
Alkaline 9V single use battery, cost per use: $2.160

Silver Oxide Button single use battery, cost per use: $4.185
Lead Acid rechargeable battery, cost per use: $0.095

NiCad rechargeable battery, cost per use: $0.002

LiPo rechargeable battery, cost per use: $0.002

*/

Student Number: Page 11 of 19

Problem 4, Cont.)

The exception class, BadBattery:

:]Dulolfc c_[c.ss Bo\(lv Bu 4t @‘j @(J(e_u\(i. Efcef +/'on {

?u_\:lic, Bapl.gu-t{et:{ C§ﬂ—?w\c/ wmesage) {
Sifer- (message) 5

Student Number: Page 12 of 19

Problem 4, Cont.)

The base class, Battery:

?"""l e absea et ClaS} Bt ery %/

Fivate bt .
v a3 N nName 9

¥ i vade OLD\AHQ wl-koge/‘

frimte ol'ouLle Col—t

3\4‘;\((, \ga—k{e)—\‘j ¢ S‘EH‘Vj nam double Wl) (que Cos) &hyory ‘E"A&‘H\eﬂ
i:[((v\o\wx =z vall) 1) Crnam .length =o)) {
k\mw new Bu{ ?utfevj (" N=t ledg‘ '))

*Lig, wame = f\qm)'
‘j((V°"‘0)l (vol 7J‘o))
4hvow new Boolgu{r{etj (" N+ |ea,“|n)/.
thic . VOIiaJc = vl ;

|j (C“S 21) 11CCos > Zogo'a))
4hyoww new Boolguﬂed (" N+ legul”)/'

this . st =0t ¢
f\hlal(C S‘EHV\J 3efl\[aw(’. c) {
yetuhn +his. hame |

J

?u‘al(c que 3e*Cos—ec) {
betupn Fhis. coSfJ-j

wblic obstiract c}ouUe @exl_.‘Je{(mo.() 5

J

Student Number: Page 13 of 19

Problem 4, Cont.)

The SingleUse class:

Mlic class Single Ve extend BuHe}d{

.?).;va-((ollee Co.facﬁdj

gublic 4i*\j\e\’5C (Q"-H“\‘] nam , hauble vl) Jlee Cos , dwble 7) &hraw
g«lﬁﬁ:ﬂ

{

6“?6!—(V\QW\) Vol , CDS>)
fj ((CaflO-Oo') ll (Cal’ 7@03))
’EL\LUW new deBa{{el«JC“ Aot {e/yql”);
‘EL\\‘S. cafaciﬁ - Caf)“j
\%Llfc_ CJDuLle je{Can_HJ < {

Yetuln ’EL:S . Cneac,f—tj)

@ovehide j
?nu?C JD\LLIQ 82‘(),:er{fme (QS{ C) {

VQ‘{‘(H/\ (C‘EI/\CS. 86‘& CD.S‘QS)) _* C{l,\l's i ae{ \/olfu]e,) % .EL\,_S e

g

Student Number: Page 14 of 19

Problem 4, Cont.)

The Rechargeable class:

Student Number: Page 15 of 19

Problem 5) [10 marks]

For this problem you will need to write a single generic method called “getLowCost” that would be
included in the TestBatteries class shown on page 10 in Problem 4.

The getLowCost method accepts two arguments — an ArrayList collection and a double value.
The ArrayList collection could be of type ArrayList<Battery>, ArrayList<SingleUse> or
ArrayList<Rechargeable>, where the Battery, SingleUse and Rechargeable classes are
described in Problem 4. The getLowCost method returns an ArrayList collection with the same
element type as the one supplied as an argument with just those battery objects whose per use
cost is less than or equal to the double value supplied to the method as the second argument.
The per use cost is the value returned by the getLifetimeCost method described in Problem 4.

The generic getLowCost method:

?w\o\ic stakle 2T extends Buttery X Linglo se @\sﬁec,lm eable >
A—H—cq].{s{ LT ﬁe{l@"\/ Cost (. Aray List KT7 0w | JDVLE‘U\,B i
W}« > yeﬁumlfﬁ - new A;»@Lls{ 420y
W Gownt =0
E)L C T T . a)«l'ud
\{ Cou.geife&t) 2 &)

betwrnied [oownt] = ok 3
Coun€ = |

v
Dr[«l’“\‘jl/ € TP

jok

Pty retrlE

Student Number: Page 16 of 19

Problem 6) [10 marks]
Here is a complete JavaFX program:
package application;

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.control.Button;
import javafx.scene.control.Llabel;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;

public class Main extends Application {

@Override
public void start(Stage primaryStage) {
try {
HBox root = new HBox(10); // A 10 pixel gap
VBox box1l = new VBox(19);
VBox box2 = new VBox(10);

VBox box3 = new VBox(19);
Button buttonl = new Button("Button 1");
Button button2 = new Button("Button 2");
Button button3 = new Button("Button 3");
Label labell = new Label("Label 1");
Label label2 = new Label("Label 2");
Label label3 = new Label("Label 3");
Label label4 = new Label("Label 4");
box1.getChildren().addAll(label2, buttonl, label4);
box2.getChildren().addAll(button2, labell, label3);
box3.getChildren().add(button3);
root.getChildren().addAll(box2, box3, boxl);
Scene scene = new Scene(root, 400, 140);
// Sorry about the formatting for this line, but now it fits..
scene.getStylesheets().add(getClass().getResource("application.css").toExternalForm());

primaryStage.setScene(scene);
primaryStage.setTitle("Problem 6");
primaryStage.show();

} catch(Exception e) {
e.printStackTrace();

}

} // end start method

public static void main(String[] args) {
Launch(args);
} // end main method

} // end Main class

Student Number: Page 17 of 19

Problem 6, Cont.)

a) Using the empty window shown below, sketch the appearance of this window as it first
appears. Draw a button as text inside a drawn rectangle and a label as just text. Don’t worry
about imitating fonts or even drawing straight lines. Concentrate on getting the relative positions
of buttons and labels and their associated text correct. Note that the pane objects used do not
display their borders.

You are not given the contents of the stylesheet, but you don’t need to see this stuff — the
contents of this file will not affect the layout of the nodes and the text they contain.

L S [—
; ’7“{'{“\1 ljwf‘ﬁolng)-nLﬁl 2
)—GLQI l LV\-‘('(DV\ I
Jalel 3 bel f

@A Label owns a method called setText(String arg) that can be used to change the text
isplayed in a Label to the String contained in arg. A Button owns a method called
setOnAction(EventHandler<ActionEvent> arg) that can be used to attach an event listener to a
Button. The interface EventHandler<ActionEvent> contains a single abstract method called
“handle” with the following signature:

void handle(ActionEvent event);
In the box on the next page, write code that uses a lambda function to add an event listener to the
button3 node that changes the text in label1 to “Label One” and the text in label2 to “Label Two”

when the user clicks on button3.

Write just the code that you would add to the code shown on the previous page. Do not repeat
any of the code shown on the previous page.

c¢) Finally, draw an arrow in the previous page showing where you would add this code to the
provided code.

Student Number: Page 18 of 19

Problem 6, Cont.)

The lambda function code needed to add the action listener to button3:

Student Number: Page 19 of 19

(extra page)

)

CISC

QUEEN'S UNIVERSITY
SCHOOL OF COMPUTING

| I—

).

24,

=

HAND IN
Answers Are

Recorded on
Question Paper

CISC124, FALL TERM, 2015
FINAL EXAMINATION
7pm to 10pm, 15 DECEMBER 2015

Instructor: Alan McLeod

If the instructor is unavailable in the examination room and if doubt exists as to the interpretation
of any problem, the candidate is urged to submit with the answer paper a clear statement of any
assumptions made.

Proctors are unable to respond to queries about the interpretation of exam questions. Do your
best to answer exam questions as written.

Please write your answers in the boxes provided. Extra space is available on the last page of the
exam. The back of any page can be used for rough work. Please do not take the exam apart!
This exam is three hours long and refers exclusively to the use of the Java language. Comments
are not required in the code you write. For full marks, code must be efficient as well as correct.

This is a closed book exam. No computers or calculators are allowed.

Student Number:

Problem 1: /30 Problem 5: /10
Problem 2: /20 Problem 6: /30
Problem 3: /10 Problem 7: /10
Problem 4: /10

TOTAL: /120

This material is copyrighted and is for the sole use of students registered in CISC124 and writing this exam. This
material shall not be distributed or disseminated. Failure to abide by these conditions is a breach of copyright and may
also constitute a breach of academic integrity under the University Senate's Academic Integrity Policy Statement.

Student Number:

Problem 1) [30 marks]

iy I Gg/gﬁ - o %Y

Page 2 of 22

Mark each of the following as True or False using “T” or “F”:

N A T A R e e R N N P P S =

—
Compilation of Java source code produces an intermediate byte code file which is then T
processed to produce an executable file.

Every IDE uses its own unique Java compiler. \/

Methods can only be declared within classes. /

Attributes can be declared outside classes. \/

Static methods can be invoked without instantiating the class that owns them. \/

Every class must be declared to contain at least one attribute. (/

Switch statements can work with Strings as well as integer and floating point types. M

A Java class can only extend one class. \/
Every class in Java is a sub-class of the Object class. \/
",
An interface can only contain abstract methods and final static attributes. (&
o

Both public and private methods are inherited by a child class from a par\en/to/lass as long
as it is in the same package as the parent class.

-
A class with a parameterized constructor will no longer have a generated default {
constructor.

Only constructors can throw exceptions.

L/

A class that contains constructors that throw exceptiMust have a throws decoration in
the class declaration line.

An abstract class can contain normal attributes and onl%ct methods.

Student Number: Page 3 of 22

Problem 1, Cont.)

:

o

h\ H ,',N ‘/g\ '/\ ‘/\ ‘/\ F\ ‘/\ }/\ '/:\ ‘/c\ ‘/\ }/

A child class can implement many interfaces. \/

A sub-class that extends an abstract class must have a non-abstract implementation 21/
every abstract method in the super-class, unless the sub-class is abstract as well.

The first line of code in a child class’ constructor must be a call to the parent class’ /

constructor. /

Abstract classes can be instantiated.
Interfaces cannot be instantiated. \

v

A variable of an abstract class type can be assigned to point to an object of ze}orﬁcrete
child class type that extends the abstract class.

A variable can be declared to be of an interface type.

A variable of type Object can point to any object in Java. k/

Early binding is satisfied at the time of compilation. \/

Late binding is the process that provides polymorphism at we.

Non-final attributes should always be declared private. L/

A mutator returns the value of the attribute it is changing. \/

A standard clone() method throws an exception if a valid clone object cgy@e created.
For the equals() method to override the equals method inherited from th ject class it

must accept a single Object type argument.

A standard compareTo() method returns a boolean value.

Student Number: Page 4 of 22

Problem 1, Cont.)

/(An overridden method refines the method it is overriding by invoking it/

Sl b b R PR L

A child class can overload a method inherited from a parent class provided the namﬁ\gy
the method is the same, the return type is the same and the parameter list is the same.

Classes cannot contain both static and non-static methods declared in the same scope
/‘
A static method cannot use non-static attributes. \

An ArrayList<T> object holds objects of type T. \/

A generic class is also known as a “parameterized class”. \/

Array types can be provided as types to generic classes. J

An interface type can be provided as a type to generic classes and methods. \/
The “< >” in a generic type can hold more than one type. \/

Generic methods can enforce type safety where methods that accept and return Objects /(
cannot. ﬁ

Type inference can be used with generic classes and methods. \/

GUI programs can only respond to mouse events such as mouse button Wd cursor

movements.

An EventHandler object must be attached to a JavaFX component in gtder for it to respond
to an event.

“AWT” stands for “Awful Windows Tookit”. L/

The Swing GUI toolkit has been replaced by JavaFX. /

Student Number:

Problem 1, Cont.)

},.\

T
1

R I I I

JavaFX contains a control that can act as a web browser.

Page 5 of 22

V4

A JavaFX project can use separate stylesheet and fxml files along with norma] Java

source code files.

Stylesheets, or *.css files, are used to create and position nodes belonging to Q_sz{ane

Graph.

Fxml files are stored in binary format.

A single setting in a stylesheet can be used to alter the look of all co

Scene Graph.

v/

Qtys/belonging toa

A stylesheet can be used to alter the look of just one control at a time.'\/

An fxml file is designed to inject nodes into a *.java controller file when it is%g

instantiated.

The use of nodes in an *.java controller class is indicated with the “@FXML” otation.

The controller class associated with an fxml file must instantiate the nodes uged by a

particular scene object.

A scene object must be added to the stage object supplied to the overridden start method

as an argument in a JavaF X application.

The root object of a scene object is usually an instance of a class that extends the PQn/e/

class.

The BorderPane object breaks up a region into five areas that can be used to contain/

nodes.

A FlowPane object maintains the relative positions of its nodes independent of the siiyz

the pane.

JavaFX does not support animation.

JavaF X does support drawing with 3D objects.

Y/

T

Student Number: Page 6 of 22

Problem 2) [20 marks]:
Answer the following questions as briefly as possible:

Can you store an int value in an ArrayList<T> object and if so, how would you do it?

What is the purpose of implementing the Comparable<T> interface?

What is the reason for making non-final attributes private?

What is the advantage to declaring class members static?

What is one advantage of using polymorphism?

Student Number: Page 7 of 22

Problem 2, Cont.)

What does it mean to say that an “exception is propagated”?

Name one advantage of using inheritance.

Why is a try-with-resources block better than a normal try-catch block when used with File 1/0?

Which file format — binary or text — produces the most compact file for storing numeric data and
why?

What is a Scene Graph as used in JavaFX?

Student Number: Page 8 of 22

Problem 3) [10 marks]

Provide the console window output of each of the following printin statements. If you think the
statement will cause an error, write “error’ instead.

System.out.println (15 / 2.0) ittt ittt

System.out.println ((double) (7 / 2))i e iieeennnnnnn.

System.out.println (6 * (2 / 3) + 7)i ittt

System.out.println (true && 1) c i i it ittt teeeeeeneeeens

System.out.println (6 * 2 / 3.0 + 7) cuiiiiiinennnnnnn

System.out.println (6 * 20 / (3 + 7))i ceuiiiiennnnnnn

System.out.println (5 > 2 || 3 <= 1) ittt iteteeenennn

System.out.println (2 % 3) ittt ittt ettt naaeeas

System.out.println (26 & 3) v ittt et eeeeeeeneeeeaneeneas

System.out.println (4 + 6 * 2 — 7 + 10 / 5 = 1); v,

System.out.println (true && 9 '= 7) ittt

System.out.printIn (M4"™ + 3 4+ 1) ittt it e e e e

System.out.println (2 + 1 + "7 = 4); (it e et e e

System.out.println (5 > 2 && 6 !'= 5 || 7 < 3)} ciiiieeeon.

System.out.println (6 + 7 <> 13) ittt eeneeeeenneneas

System.out.println (2.4 / (int) 1.2) it iennnnnnn

System.out.println ((int) (9.6 / 2.0)) e enennnn.

System.out.println (7 + 2 > 3 && 9 >= 2 + 2 + 2); ...,

System.out.println (Character.isDigit ("123"™)), ...

System.out.println (Character.toLowerCase('B')); ...

Student Number: Page 9 of 22

Problem 4) [10 marks]
Write the output of the following complete program, which runs without error, in the box provided:

public class Probleml {

public static double fiddle(int numl, int[] numsl, int[] nums2, String str) {
str = str.toLowerCase();
int size = str.length();
String flipped = str.charAt(size - 1) + str.substring(l, size - 1) +
str.charAt(9);
System.out.println(flipped);
numl = size;

for (int num : numsl)
num *= 10;
System.out.println(numsl[0]);
double sum = 0;
for (int i = 0; i < nums2.length; i++) {
sum += nums2[i];
nums2[i] *= 10;
}
System.out.println(nums2[0]);
return sum;

}

// Displays numbers on one line
public static void showArray(int[] array) {
System.out.print("Array: ");
for (int num : array)
System.out.print(num + ", ");
System.out.println();

}

public static void main(String[] args) {
int[] arrayl = {2, 3, 4, 5};

int[] array2 = {1, 2, 3, 4};

String aString = "Hello Class!";

int aNum = 20;

double aVval = fiddle(aNum, arrayl, array2, aString);
System.out.println(aNum);

showArray(arrayl);

showArray(array2);

System.out.println(aString);
System.out.println(aval);

Student Number: Page 10 of 22

Problem 5) [10 marks]
Here are a bunch of classes and an interface from the same Java project:
public abstract class Base {

public int sum(int a, int b) {

return a + b;
}

public int multiply(int a, int b) {
return a * b;

}
public abstract int subtract(int a, int b);
} // end Base
interface Dividing {
int divide(int a, int b) throws DivideByZero;
} // end Dividing
public class DivideByZero extends Exception {
public DivideByZero(String message) {
super(message);
}
} // end DivideByZero
public class Concrete extends Missing {
public int multiply(int a, int b, int c) {

return a * b * c;

}

} // end Concrete

There are two more classes in this project. The one on the next page contains a main method
that tests the other classes:

Student Number:

Problem 5, Cont.)
public class Demonstration {

public static int remainder(int a, int b) {
return a % b;
}

public static void main(String[] args) {

Concrete test = new Concrete(); // Prints:
System.out.println(test.sum(4, 5)); // 9
System.out.println(test.sum(4, 5, 6)); // 15
System.out.println(remainder(12, 5)); // 2

System.out.println(test.multiply(4, 5)); // 20
System.out.println(test.multiply(3, 4, 5)); // 60
System.out.println(test.subtract(4, 5)); // -1

try {
System.out.println(test.divide(10, 0));

} catch (DivideByZero e) {

Page 11 of 22

System.out.println(e.getMessage()); //Attempt to divide by 0!

}

try {
System.out.println(test.divide(10, 2)); // 5

} catch (DivideByZero e) {
System.out.println(e.getMessage());

}

try {
Dividing dTest = new Missing();
System.out.println(dTest.divide(15, 2)); // 7

} catch (DivideByZero e) {
System.out.println(e.getMessage());

}

} // end main

} // end Demonstration

As you can see the listing shown above contains the output of the program when run as in-line
comments. One class is Missing. The Missing class extends one class and implements an

interface. Write the Missing class on the next page:

Student Number: Page 12 of 22

Problem 5, Cont.)

Student Number: Page 13 of 22

Problem 6) [30 marks]

For this problem you will need to write two classes, the first is an exception class called
“ltemException” and the second an encapsulated class called “ltemRecord” that will use the
ltemException class.

The exception class only needs the one constructor that takes a String type message.

The ItemRecord class is designed to hold an inventory count for a single item from a store. It has
three attributes:

e A String type store code which must be at least five characters in length.

e A String type SKU code which must be exactly 10 characters in length and must consist of
a combination of numeric digits (0 to 9, inclusive) and a single hyphen, -, at index position 5
in the String. For example, the SKU codes "45307-1239" and "02357-0012" would be legal,
but the codes "89abc-3451", "89-1234567" and "023537-0012" would not be legal.

¢ An int count for the inventory of this item. The count must be greater than or equal to zero.

The ItemRecord class has a single constructor and is immutable. It has an accessor for each
attribute. It also needs the standard equals(), compareTo() and toString() methods, but does not
need a clone() method since it is immutable.

Equality of two ItemRecord objects is defined as both objects having the exact same store code
and sku code. The two objects can have different item counts and still be equal. You must
override the equals() method inherited from the Object class.

For sorting purposes, when the compareTo() method will be used, ltemRecord objects are
compared on an alphabetical basis using the store code first, followed by the SKU code, also on
an alphabetical basis. A negative return from compareTo() means the supplied ItemRecord
object comes later in the alphabet that the current ItemRecord object.

Finally, the String returned by the toString() method would look like the following examples:

Store: KIN@O2, item: 45307-1239, count: 10
Store: LONOGO1l, item: 02357-0012, count: 20

No other public methods are required. Comments are not required. No other classes are
required. A main method is not required.

Write the exception class first on the following page, then write the ltemRecord class starting on
the middle of the next page and following onto the next three pages, as needed. If you run out of
room you can continue the class on the last empty page of the exam.

The Character wrapper class owns the static method .isDigit() that returns true if the supplied
char is a digit. The String class owns the methods .length(), .charAt() (supplies the char at the
given index position) and .equals().

Please don’t separate the pages of this exam or if you must, then put them back in the same
order!

Student Number: Page 14 of 22

Problem 6, Cont.) The ItemException Class:

The ItemRecord class:

Student Number: Page 15 of 22

Problem 6, Cont.)

Student Number: Page 16 of 22

Problem 6, Cont.)

Student Number: Page 17 of 22

Problem 6, Cont.)

Student Number: Page 18 of 22

Problem 7) [10 marks] Do part A or part B, but not both.

Part A) The following code is the xml language contents of an fxml file attached to a JavaFX
project:

<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.control.*?>
<?import java.lang.*?>

<?import javafx.scene.layout.*?>
<?import javafx.scene.layout.VBox?>

<VBox prefHeight="234.0" prefWidth="407.6" spacing="160.0"
stylesheets="@application.css" xmlns="http://javafx.com/javafx/8.0.40"
xmlns:fx="http://javafx.com/fxmlL/1">
<children>
<Label prefHeight="23.0" prefWidth="327.6" text="Four calling hens!" />
<HBox prefHeight="100.0" prefWidth="299.0" spacing="10.0">
<children>
<Button fx:id="btnl" mnemonicParsing="false" text="Three" />
<Button fx:id="btn3" mnemonicParsing="false" text="French" />
<Button fx:id="btn2" mnemonicParsing="false" text="Birds!" />
</children>
</HBox>
<HBox prefHeight="100.0" prefWidth="200.0" spacing="20.0">
<children>
<Label text="Two" />
<Button fx:id="btn5" mnemonicParsing="false" text="Partridge" />
<Label text="Doves!" />
</children>
</HBox>
<HBox prefHeight="100.6" prefWidth="200.06">
<children>
<Label text="And a Turtle in a " />
<Button fx:id="btn4" mnemonicParsing="false" text="Pine Tree!" />
</children>
</HBox>
</children>
</VBox>

Sketch the window on the next page.

Do not worry about absolute pixel sizes, the shape of the letters or drawing straight lines, just try
to get the relative positions of the components correct.

Draw a label as just text and a button as text inside a rectangular outline. Don’t worry about
colours or shading.

Student Number: Page 19 of 22

Part A, Cont.)

® ° Mixed Up Christmas Song - O X

Student Number:

Page 20 of 22

Part B) Here is the content of the Main.java file from a different JavaFX project than the one
used in Part A:

package application;

import
import
import
import
import
import

public

javafx

javafx

javafx.
javafx.

stage.Stage;

.scene.Scene;
javafx.

scene.control.Button;
scene.control.Label;
scene.layout.GridPane;

.application.Application;
javafx.

class Main extends Application {
@Override
public void start(Stage primaryStage) {

try {

GridPane root = new GridPane();
Button buttonl
Button button2
Button button3

Button button4

Button button5

Label labell
Label label2
Label label3
Label label4
Label label5
//

new
new
new
new
new

Button("And a Partridge");
Button("Tree");
Button("Turtle Doves");
Button("Three");
Button("Hens");

new Label("Four Calling");
new Label("Two");

new Label("in a Pine Tree");
new Label("French");

new Label("in a");

col,

root.add(label2, @,
root.add(button3,
root.add(label3,
root.add(labell,

root.add(buttonil,
root.add(label5,

1,
2,
9,
root.add(button5, 1,
9,
1,
2,

root.add(label4,
root.add(button2, 3,

Scene scene =

new

row
9);
0);
9);
1);
1);
2);
2);
2);
2);

Scene(root, 760, 260);

scene.getStylesheets().add(getClass().getResource("application

ternalForm());

}

primaryStage.setScene(scene);
primaryStage.setTitle("Another Mixed Up Song");
primaryStage.show();
} catch(Exception e) {
e.printStackTrace();

.css").toEx

Student Number: Page 21 of 22

Part B, Cont.)

public static void main(String[] args) {
Launch(args);

}
} // end Main class
Sketch the window below.

Do not worry about absolute pixel sizes, the shape of the letters or drawing straight lines, just try
to get the relative positions of the components correct.

Draw a label as just text and a button as text inside a rectangular outline. Don’t worry about
colours or shading.

' Another Mixed Up Song - O X

Student Number: Page 22 of 22

Extra Page

