
124 FINAL

Untitled Note

 Final Exam Topics

Note that an aid sheet will not be provided with the final exam. More obscure Java syntax details will be
provided with the problem statement, if needed.

Java Fundamentals
Primitive types, variable declaration and initialization, expressions, conditionals, loops.
Type casting of primitive types and objects.
Screen (or "console") output using System.out.println() and System.out.printf().
Screen input using the Scanner class.
Arrays - single and multi-dimensional.
The ArrayList<T> class.
Aliasing objects.
Strings (String method signatures will be provided, if required).
StringTokenizers
Wrapper classes (Wrapper class method signatures will be provided, if required).
Enumerated types or enum's.
Importing packages.
Packages and use of static import.
Use of modules in Java.
Methods - use and declaration.
Passing parameters by value and by reference.
Object instantiation.
Use of instanceof, this, super, static, final, public, private, protected, extends and implements keywords.
Method refining, overloading and overriding.
File I/O (As in Exercise 5).
The File class (As in Exercise 5).
Lambda functions and method references.

OOP in Java
Definition of a class, an object (instance), instance variables or attributes, static variables and static methods
Encapsulation or "Information Hiding"

Constructors.
Mutators, accessors.
Other methods - equals(), compareTo(), clone(), and toString().

Constructing an Object Hierarchy
Inheritance
Inner or nested classes.
Anonymous classes.
Abstract classes.
Interfaces. (Including changes made in Java versions 8 and 9.)
Polymorphism or Dynamic Binding or Late Binding.
Generic classes.
The Class<T> Object.
Generic methods.
Generic wildcards.

Exceptions
Throwing.
Catching.
Writing your own Exception classes.
Try-with-resources structure (As in Exercise 5).

GUI Design in Java
Using JavaFX to build a simple window:

All Panes except for TextFlow, StackPane, DialogPane and PopupControl.CSSBridge - how they work and what
layouts they provide.
TextField, TextArea, Button, ChoiceBox, CheckBox, RadioButton and Label nodes.
How to attach a listener/event combination to a node, including the use of a Lambda function. Responding to
a Mouse Click or a Change Event.

2018/12/17 7--00714 - to : 3ha Gym 3C BARTLETT) Mitchell
Hall

✓

✓ 2g g
✓

q

A general understanding of the various files used to build a JavaFX GUI and what they are used for: *.java
files including the controller file and Main.java. Also *.css and *.fxml files.

Interpret the essense of a GUI structure from either java construction code or fxml code.

Other Topics
Numeric representation.
Source and Effects of Roundoff Error.
Summations and Increasing Their Accuracy.
Objects in General.
History of Java.
JUnit testing.

Not on final. Several of these topics were discussed in previous offerings of this course, but not in the current offering.
Use of whitespace and documentation in code.
Use of Eclipse, WindowBuilder Pro or SceneBuilder.
Javadoc tool.
Functional decomposition.
Class diagrams.
Debugging techniques and the use of the debugger in Eclipse.
Writing clean code.
Built-In JavaFX Dialogs.
JavaFX Nodes: ToggleButton, Slider, Spinner, Canvas and Progress Bars.
GUI "Look and Feels".
Building JFrame based windows using Swing and AWT.
CardLayout layout manager.
JOptionPane, JFileChooser, JColorChooser classes.
Swing Controls: JTextArea, JComboBox, JSpinner and JSlider Components
ImageIO
Graphics2D
Swing or JavaFX Animation
AffineTransform
Applets
BufferedImageOP
Java Web Start
Multi-threading using Timer and Thread classes.
The fork/join framework used to thread multi-core processes.

Sample Exam Questions

Old CISC124 exams show quite a shift in topics! And, many of the older exams were open-book, where ours is not. Basically,
ignore anything to do with C++, UML diagrams and data structures. And, older exams are focussed on GUI construction using
JFrame and Swing, where this offering of the course is using JavaFX.

December 2017 Final and Solution
December 2016 Final and Solution
December 2015 Final and Solution
December 2014 Final and Solution
December 2013 Final and Solution
December 2012 Final and Solution
April 2012 Final and Solution
April 2011 Final and Solution
April 2010 Final and Solution
April 2009 Final and Solution
Dec 2007, Q1, Q4
Dec 2005, Q2 and Q4
Dec 2004, Q1 to Q3, Q6
Dec 2003, Q1, Q2 and Q3 (note the comprehensive aid sheets supplied with this exam!)
Apr 2004, Q5
Dec 2002, Q2 and Q5
Dec 2001, Q1 to Q6, Q9 to Q11
Don't use any older exams

Here are some old CISC212 exams that might be useful:

The 2007 final exam and its solution. Q3 to Q6
The 2006 final exam and its solution. Q3 and Q5
The 2005 final exam and its solution. Entire exam is good.
The 2004 final exam and its solution. Q2 to Q4

Preparation

Work through the old exams first, without looking at the solutions. Time yourself.
Go over your quizzes and their solutions. Make sure you understand what you did wrong.
Go through the exercises. Examine assignment solutions, especially if you had problems with the assignment.
Make sure you can write code! If you can't write Java code by now, you will have problems on the final exam.
Be prepared to read code, write code, answer short answer questions and true/false questions.
Ask questions in an onQ forum while you are studying.
Any questions Emailed to the prof. may still end up (anonymously) in the forum.
Get a good sleep the night before!

Last modified: 12/01/2018 13:09:44

Notes for introduction

History of Java

The language was first developed by James Gosling at Sun Microsystems in 1991
He was designing a language, called “Oak”, for the “Green Project”

– The Green Project envisaged the centralized control of many processor-based devices in the
home
“Oak” was designed to be a robust, efficient language with maximum portability to different
processors

The Green Project flopped
In the early 90’s, Needed a robust, compact, multiplatform language, so let’s dust off Oak and call it
something racy like “Java”
In 1994, Sun Microsystem demonstrated the use of Java in small bundles of code embedded in a web
page - called applets
Netscape browsers started supporting applets in 1995, starting Java’s rise to fame
Early in 2010 Oracle acquired Sun Microsystems.

How Java Works?

A compiler (part of the “JDK”, or “Java Development Kit” – sometimes called javac.exe) which is
designed to run on your development platform, compiles your source code (*.java file) to a byte code
file (*.class file).

The byte code file is platform-independent, and is the thing you would attach to your web page as
an applet
Two components of the JDK are the programs “javac.exe” and “java.exe”.

 javac.exe is the byte code compiler, and java.exe is the JRE which executes the byte
code file.

The java.exe program:
accepts the byte code file
links in any required libraries
creates executable code in memory
converts it to machine language
sends it to the CPU.

“Compilation” is the process of converting the *.java file to a *.class file (the byte code file).
This is done by calling javac.exe in the background, and supplying that program with all the
required command line parameters.

Every browser written for every platform and OS, can have an embedded code processor called a JVM, or
“Java Virtual Machine”, built-in.

The JVM takes the byte code and executes it by generating the machine code that will be

"
quiz I prep fate I

' '

recognized by the platform that is running the browser
JVM could run stand-alone Java applications. This is the JRE or “Java Runtime Engine” (java.exe).
So, Java can be used either to create applets for use in web pages or for stand-alone applications.
However applets have fallen out of favour in the last few years due to security concerns

Class Structure

A class or “object definition” or an “object”, consists of instance variables and/or methods
By convention, instance variables are all declared before the methods

 In Java, a class is an Object, and an Object is a class
Code and attributes cannot be defined outside of a class
The only code that can exist outside a method are attributes or other (“inner”) class definitions
Attributes

Also called “class variables” or “instance variables” or “fields”
Declared within a class at the same level as the method declarations, these variables are known to all
methods in the same class
You can control their privacy and the way they are stored in memory
(using public/private/protected and static).

public means the attribute or method is available to any external class (as well as
inside the class)
private means that the attribute or method, the “member”, is only available inside the
class in which it is declared.
protected means the member is only public to classes in the same package as the class

public class ShowStructure {
 // instance variables or “attributes” here
 // methods here
} // end class ShowStructure

[private|public] [static] [final] type attributeName [= literalValue];
//鉖᯾磪[]ጱ᮷դ蔭ጱฎoptionalጱ

1
2
3
4

1
2

in which the member is declared
static: static means different things depending on where it is used.

public static members are available outside the class without the need to instantiate the class
Any static member remains in memory until the program is complete
Since main is static, it can only invoke other static methods when they are in the same
class

type part is not optional – this is why java is a declarative language, And, a variable cannot change its
type later, called static typing, cannot use a variable unless you have declared it first.
Variable Declaration

Declaring a variable inside a method gives that variable the scope of just inside the method, not
outside the method

Method Declaration

The returnType can be any single Object or a primitive type, &'#����return�)H�
�
returnType�">�void

starting point of the whole program is always the execution of the main method
Each parameter type must be declared in the parameter list, as in type parameterName,
type parameterName, …
Unless the return type is void, the method must contain at least one return statement�method"+
�, The type of “literal|expression” must match the return type specified in the method declaration
statement.

Primitive Types

Everything else in Java is an Object, A variable declared as one of the types shown below is not an Object

Integer Primitive Types
byte, short, int, long

variabletype variablename = value;

[private|public] [static] [final] returnType methodName ([parameterList]) {…}

public static void main (String[] args) {…} //declaration for main

1

1

1

For byte, from -128 to 127, inclusive (1 byte).
For short, from -32768 to 32767, inclusive (2 bytes).
For int, from -2147483648 to 2147483647, inclusive (4 bytes).
For long, from -9223372036854775808 to 9223372036854775807, inclusive (8 bytes).

A “byte” is 8 bits, where a “bit” is either 1 or 0.
Real Primitive Types/“Floating Point” Types

float, double
For float, (4 bytes) roughly ±1.4 x 10-38 to ±3.4 x 1038 to 7 significant digits
For double, (8 bytes) roughly ±4.9 x 10-308 to ±1.7 x 10308 to 15 significant digits

Character Primitive Type
char
From '\u0000' to '\uffff' inclusive, that is, from 0 to 65535 (base 10) or 0 to ffff (base 16, or
“hexadecimal”). A variable of the char type represents a Unicode character. Can also be represented
as 'a' or '8', etc.

Boolean Primitive Type: true/false
String Objects

String’s are not primitive data types, but are Objects

Array Declaration

new is always involved with the instantiation of an Object.
Arrays are Objects in Java
Java array can only hold items of all the same type (even if they are objects)
The size of a Java array must be declared and is then fixed
In Java you can only get at a single element at a time

To get the size of an array, use the .length attribute
For example anArray.length would provide 4 for the array on the previous code
In Java, you cannot use pointers to access array elements, only the indices
The first array element is at index zero

��F5��3<H$!��declare�#�type�)HJava��. �D�int

String example = "I am a string!";
//or
String example = new String("I am a string!");//This is called instantiation

int[] data = new int[10];// 鉖᯾ᶎ鉖ӻ10瞲ጱฎ֦declareጱ鉖ӻarrayጱsize
//or
 int[] data;
data = new int[10];

int[] anArray = {1, 2, 3, 4}; // Array literal!
anArray[2] = 10; // Changes third element to 10

1
2
3

1
2
3
4

1
2

*

�<?!+/��L
��C�long
ex: 43 >>> 43L

Binary, Octal and Hex Literals
Use the prefix 0b (or 0B) in front of the numbers to get a binary literal
Octal – just use 0
Hex use 0x

��F5�����<H��Java
�.���<�,���doubleH�<?!+/F��D�float
Java names may contain any number of letters, numbers and underscore (“_”) characters, but they must
begin with a letter
var

var is not a Java keyword instead it is called a “reserved type name”

aNum will be of type int
The type for the variable is inferred from the type of the literal value used to initialize the
variable
var can reduce repetition in longer declarations

Constant Attribute Declaration

The Java keyword, final can be used to make sure a variable value is no longer “variable”.
Usually these are declared public static
Java will not allow your program to change a constant’s value once it has been declared

Type Casting

When a value of one type is stored into a variable of another type
A value to the left can be assigned to a variable to the right without explicit casting

0�6E9�G�:*
6�H-�4����G:*
����G:*�;�1=
&'2@(8Iint anotherVar = 345.892;
the compiler would protest loudly because a double cannot be stored in an int variable without loss of
precision. Wrong direction!
&'���4@(87�)H
�%	AB��<?�loss precision�

int anotherVar = (int)345.892;
The variable anotherVar would hold the value 345

var aNum = 10;

[private|public] [static] final type ATTRIBUTE_NAME = literal_value; //constantጱਁݷӞਧᥝय़豔

1

1

mum &

Arithmetic Operation
Additional

Binary arithmetic operators 47ft!
* ,

|
Division Cl ,

✓ Modulus c %) CHIT = R÷JBf¥Ex=2)
2¥tLHHL Binary arithmetic operators ¥N¥# FE operator Fafsa ¥f¥EEtEL¥FFh# It

'

H' ie

* ¥fE integer .FR#FtfLtsaf,EEGAEEFEEz' ¥025 'T integer

#¥¥tGf LATEmixed tyrethaft.EE
,
Java 's EE -4 typecast ¥13 - T type ,EIGFZEIAE.BE#jFffftyze,G5Ttk,

#
'* ' II int 3 t double 3. Raft'T

, java Hofer 3 cast # double 3
, ¥1 .

Sz¥*EEGFEEZtFa¥÷ 'T double

* FE t # ¥ String 41¥ ,
Flik 't String 2¥54 - IT String

* itE¥EfHE¥¥tHI¥Hz
"
t

' I → Positive

"
-

' '

→ Negative

Arithmetic Operators { it → inclement
,

increase the number by I

-
-

→ decrement , decrease the number by I

He increment : tti
, they increment the variable before it's used in the expression

lost inclement i itt
,

~ after ~

Be decrement :
- - i

,
they decrement ~ before ~

lost decrement :
I -

-
'

~ after ~

= KEEFE

* = multiply and set equal to

Assignment aerators { !Idsivwidfaaanda.de?e?YIaaaY+o

t = add and set equal to

==

!

-1
:

Logical Binary Operators 7 =

L =

& and
, always evaluates both sides of the extrusion

& & and
, stops when the left side is false

| I
or , always evaluates both side of the expression

"
or , stops when the left side is true

Logical operator
-

- ! , not

Precedence rules : Unary operators , casting
*

, I , to

Is
. . . .

I
= =

, ! =

&
,
&&

,
I , 11

✓
=

,
=

, t = , - =
, /=

* Expression are combinations of variable , literal values
,
operators , keywords , method

calls
,

etc .

* keywords

Method invocation , {
Naming the method

Providing arguments or not

Doing something with the return value or not

Fall 2018 CISC124 9/17/2018

Prof. Alan McLeod 2

Method Invocations – 2. Providing
Arguments for the Parameters

• If the method has been declared to accept
arguments, ie. it has a non-empty parameter list,
then you must supply a matching list of
arguments.

• If the method does not have any parameters, then
you must still use empty brackets, (), when you
invoke the method.

Fall 2018 CISC124 - Prof. McLeod 7

Method Invocations – 3. Using a Return
Value

• A non-void method will return something.
• You can use that “something” in an expression, or

just store it in a variable – your choice.
• The method has declared the type of that

“something”.
• If the method was declared as void, you will not

get a return value and you can only invoke the
method by itself, not as part of an expression or
an assignment statement.

Fall 2018 CISC124 - Prof. McLeod 8

Method Invocations - Examples

• See the MethodInvocations.java program.

Fall 2018 CISC124 - Prof. McLeod 9

Java Punctuation - Whitespace

• Multiple spaces are treated as one space.
• Leading and trailing spaces are ignored.
• Tabs and empty lines (line feeds) are ignored.

• Line continuation:
– Long lines can be continued on the line below – break

the line anywhere there is a space, but not in the
middle of a string (!).

– For good style, indent the line to show it is a
continuation.

Fall 2018 CISC124 - Prof. McLeod 10

Java Punctuation, Cont.
• Comments: inline // , block /* */
• Comma , used in parameter lists and array

literals.
• Semi-colon ; used to end a statement and with

for loop syntax.
• Colon : used with switch statements and “for

each” loop.
• Period or “dot operator” . used with objects to

obtain members.
• Also [] , () and { }
• And -> along with ::
Fall 2018 CISC124 - Prof. McLeod 11 Fall 2018 CISC124 - Prof. McLeod 12

• We will consider if, if-else and switch
statements.

• Simple if statement syntax:

if (boolean_expression)
statement_when_true;

• Example:

if (capacitance < 0)
System.out.println(“Illegal capacitance”);

Conditionals or “Selection Statements”

Simple if statement

Fall 2018 CISC124 9/17/2018

Prof. Alan McLeod 3

Fall 2018 CISC124 - Prof. McLeod 13

if-else Statement
• Syntax of if-else statement:

if (boolean_expression)
statement_when_true;

else
statement_when_false;

• Example:

if (stress > maxStress / 1.5)
result = “failure”;

else
result = “pass”;

Fall 2018 CISC124 - Prof. McLeod 14

if-else Statement, Cont.

• With statement blocks:

if (boolean_expression) {
block_of_code_when_true

}
else {
block_of_code_when_false

}

• Note indentation and bracket alignment for style.

Abbreviated if Statement
• Uses the “ternary operator” - ?
expression1 ? expression2 : expression3

• expression1 must evaluate to a boolean
• expression2 (when true) and expression3

(when false) must evaluate to the same type.
• You could use this with an assignment, for

example:
int smaller = a <= b ? a : b;

• stores the smaller of the two numbers in smaller.
Fall 2018 CISC124 - Prof. McLeod 15 Fall 2018 CISC124 - Prof. McLeod 16

“Chained” if Statements

• Syntax:

if (condition1) { block1 }
else if (condition2) { block2 }
else if (condition3) { block3 }
else if (condition4) { block4 }
…
else { blockn }

• Each condition is tested in turn, until one is
evaluated to true. If none of them are true then
the else block is executed.

Dangling else Problem

• It is not unusual to nest if statements inside each
other.

• One issue that can arise is the “Dangling else”
problem.

• See DanglingElse.java

• Indentation might give a visual clue, but has no
syntactic meaning.

• The else should be associated with the closest if.
• Use { } if necessary.

Fall 2018 CISC124 - Prof. McLeod 17 Fall 2018 CISC124 - Prof. McLeod 18

switch Statement
• Syntax:
switch (expression) {

case val1:
// statements if expression produces val1
break;

case val2:
// statements if expression produces val2
break;

case val3:
…

default:
// statements if none of the above is true
break;

} // end switch

muumuu

&

Fall 2018 CISC124 9/17/2018

Prof. Alan McLeod 4

Fall 2018 CISC124 - Prof. McLeod 19

switch Statement - Cont.
• The code to be run depends on which val# value

matches expression.
• If none match, the statements after the default:

clause are run.
• The expression and val# values (or “Case

Labels”) must all be of the same integer (including
char) or String type.

• The break; statements make sure that following
cases are not executed after a match has been
made.

• It is possible to do multiple cases on one line, but
it is clumsy:

Fall 2018 CISC124 - Prof. McLeod 20

switch Statement - Cont.
switch (expression) {

case val1: case val2: case val3:
// statements if expression is val1, val2 or
val3

break;
case val4: case val5:

// statements if expression is val4 or val5
break;

case val6:
…

default:
// statements if none of the above is true
break;

} // end switch

Fall 2018 CISC124 - Prof. McLeod 21

switch Statement - Cont.

• Not too useful a construct.

• Menu coding is a possible use:
– Provide a number of options to the user, like “(A)dd,

(E)dit or (D)elete”.
– The user presses a, e, d, A, E, D, or some other key.
– In a switch statement, you would have:

Fall 2018 CISC124 - Prof. McLeod 22

switch Statement - Cont.
switch (userResponse) { // userResponse is a char

case ‘a’: case ‘A’:
// Add operation code
break;

case ‘e’: case ‘E’:
// Edit operation code
break;

case ‘d’: case ‘D’:
// Delete operation code
break;

default:
// Tell user wrong key pressed
break;

} // end switch

switch Statement in Java 7+

• Can now use Strings.

• See Switch.java.
• Comparisons are case sensitive. As if
.equals() is being used.

• Generates more efficient bytecode than what you
would get from a chained if construct.

Fall 2018 CISC124 - Prof. McLeod 23 CISC124 - Prof. McLeod 24

Repetition or Using “Loops”

• Java has:
– while
– do/while
– for

– The “for each” loop

• Will discuss the use of break and continue

Fall 2018

-

Fall 2018 CISC124 9/17/2018

Prof. Alan McLeod 5

CISC124 - Prof. McLeod 25

• while loop syntax:

while (boolean_expression) {
block_of_code

}

• As long as boolean_expression evaluates to true the
statements in the block_of_code continue to execute.

• One statement inside the loop does not need { }.
• By mistake, you might write the following - what would

happen?

while (boolean_expression);
line_of_code

“while” loop - Cont.

Fall 2018 CISC124 - Prof. McLeod 26

• Syntax:

do {

block_of_code
} while (boolean_expression);

• Note the “;” at the end of the while statement.
• Since the conditional test is at the end of the loop,

it will always execute the loop at least once.

“do/while” loop

Fall 2018

CISC124 - Prof. McLeod 27

“for” loop
• The kind of while loop shown below:

int i = 1;
while (i < 21) {

// other statements
i = i + 1;

}

is used so often, that Java has provided another looping
structure that does all that is shown above, but needs
only one line:

for (int i = 1; i < 21; i = i + 1) {
// other statements

} or i++

Fall 2018 CISC124 - Prof. McLeod 28

• Syntax:

for (initialization; boolean_expression; update) {
block_of_code

}

• for loops are used when you know, in advance, the
number of repetitions desired.

• If there is only one statement inside the loop you don’t
need the { } brackets.

“for” loop - Cont.

Fall 2018

CISC124 - Prof. McLeod 29

“for” loop - Cont.

• You don’t have to declare the counter inside the
for loop, if you have declared it earlier in your
program.

• But if you do declare it in the for statement then
the scope of that variable will only be inside the
loop block.

Fall 2018 CISC124 - Prof. McLeod 30

• Often, you will want to visit every element in a
collection, not just a part.

• Syntax of the “for each” loop:

for (type variable : collection) {
// statements

}

“for each” Loop

Fall 2018

Fall 2018 CISC124 9/17/2018

Prof. Alan McLeod 6

CISC124 - Prof. McLeod 31

“for each” Loop, Cont.

• For example, suppose we have an array called
data, containing a collection of double type
numbers, and you want to add them all up:

double sum = 0;
for (double e : data)
sum = sum + e;

• var can be used to type the element variable in a
for each loop.

or sum += e;

Fall 2018 CISC124 - Prof. McLeod 32

“for each” Loop, Cont.
• Equivalent normal for loop:

double sum = 0;
for (int i = 0; i < data.length; i++)
sum = sum + data[i];

• The “for each” loop is a bit easier with arrays, but
is even better suited for other kinds of collections.

Fall 2018

CISC124 - Prof. McLeod 33

Loops - Misc.
• Don’t declare variables inside loops, as the

repeated declaration process uses up time and
memory unnecessarily.

• There is no limit in Java to how many levels you
can nest loops.

• It is customary, but not necessary, to use the
variables i, j, k as loop counters when the
counter has no intrinsic meaning.

Fall 2018

-

Notes for Numeric Representation

2018.9.19

“for each” loops
Multi-Dimensions Arrays

“for each” loops

When you want to visit every element in a collection
Below is the “for each” syntax and an example
Easier for array

Customary but not necessary, to use variable i, j, k to use as loop counter, .�\��æ8iĈD;�jĈD;
�k

Continue and Break

Continue�8
Éãloop��Ï�WĈ�áx�5�loop
Break�8
�ó»�loop�

for (type variable : collection) {
 // statements
}

//suppose we have an array called data, containing a collection of double type numbers, and
you want to add them all up.

double sum = 0;
for (double e : data) // var can be used
 sum = sum + e; // sum += e

for (i = 1; i <= 5; i++) {
 if (i == 3) // ࣁi=3෸牧loopᕮ๳ԧଚፗ矑୏ত୮i=4
 continue;
 System.out.println(“i = ” + i);
}
System.out.println(“End of Loop!”);

for (i = 1; i <= 5; i++) {
 if (i == 3) // ࣁi=3෸牧loopᕮ๳ԧଚፗ矑୏ত“End of Loop!”
 break;
 System.out.println(“i = ” + i);

1
2
3
4
5

6
7
8
9

1
2
3
4
5
6
7
8
9

10
11

��$[×ÿbreak/continueĈ�8Ci��¾�

Multi-Dimensional Arrays*

An array containing one or more arrays
f2D Array�Õ6��vµ, you can think of the first dimension as the rows(W), and the second
dimension as the columns(Í)
You can use three sets of [] to get a 3 dimensional array. Using the spreadsheet analogy, the third
dimension could be the sheet number, where each sheet contains a table

*Style will be on another page
*/����good style�÷þ

}
System.out.println(“End of Loop!”);

int[][] twoD = new int[4][20]; //This array has room for 80 values(4*20).
int row, col;
 for (row = 0; row < twoD.length; row++)
 for (col = 0; col < twoD[row].length; col++)
 twoD[row][col] = row * col;

 // Try using a for/each loop to generate an array
 public static int[][] generateArrayForEach(int numRows, int numCols) {
 // Try replacing array type with var:
 int[][] anArray = new int[numRows][numCols];
 int counter = 0;
 // Try replacing types with var in loops:
 for (int[] aRow : anArray)
 for (int aVal : aRow) {
 aVal = 10 * counter;
 counter++;
 }
 return anArray;
 } // end generateArray method

/*
 * A program to demonstrate good style and documentation.
 * The program prompts the user for a series of numbers and then prints out the
 * average of the numbers to the console window. The entry process stops when
 * the user enters a negative number.
 *
 * for CISC124, by Alan McLeod, version 2.3, 20 Sept. 2018
 */
// Note that even better style would use Javadoc comments - but we don't know how to do
// this yet...
public class GoodStyle {

 // This method displays the instructions for the user.
 public static void showInstructions() {

12
13

1
2
3
4
5

1
2
3
4
5
6
7
8
9

10
11
12
13

1
2
3
4
5
6
7
8
9

10
11
12
13
14

}

2018.9.23

Design A Method

Advantage for modularity(äÒs):
Easier to built
Easier to build
Easier to test

 String instructions = "This program provides the average of the integer numbers you
enter.\n" +
 "You must enter at least one number.\n" +
 "Enter a negative number to quit. This negative number is not
included " +
 "in the calculation.\n";
 System.out.println(instructions);
 } // end showInstructions method

 // This method obtains integer values from the user and returns their average as a
double.
 // If the user does not supply any numbers - just a negative number, then the method
returns NaN.
 public static double getAverage() {
 int sum = 0; // Holds the sum of the numbers supplied.
 int aNum = 0; // A number provided by the user.
 int numNums = 0; // The number of numbers provided by the user.
 // Loop until the user provides a negative number
 while (aNum >= 0) {
 // Use the IOHelper class to get an int value from the user
 aNum = IOHelper.getInt("Enter number " + (numNums + 1) + ": ");
 // If the number is >= zero, add it to the sum and count it
 if (aNum >= 0) {
 sum = sum + aNum;
 numNums++;
 } // end if
 } // end while
 // Return the average
 return (double)sum / numNums;
 } // end getAverage method

 public static void main(String[] args) {
 // Show the instructions
 showInstructions();
 // Display the average
 System.out.printf("\nThe average is: %.2f", getAverage());
 // Sincere and unnecessary program completion message
 System.out.println("\n\nAll done!");
 } // end main method

} // end GoodStyle class

15

16
17

18
19
20
21
22

23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Easier to debug
Easier to modify
Easier to share

Methods are written to avoid repeating code, make sure one thing for one method and make sure it do it
well
Methods should be short

If it can satisfy all the other rules and still explain itself, it’s short enough
Keep all code within the method at the same level of abstraction
»�Îê�����Top-down narrative��ý, The most abstract methods will be at the top of the
program, leading to the least abstract methods further down
Å#���8parametersĈ.�7�8>�Ĉ*	parameter�.��
§8object/list'f��r]ÞÔ�parameterñ+
^h~'8t��f�oparameterU��+8��

A method should either do something or answer something, or both.

Numeric Representation

p~¢ >>> �~¢
fp~¢�¨¹±0
Ĉwé¨X��5�Ĉ(é¨X��¨¹) * 2**((¨<;¨¹�¨-1) + (é¨X
p�¨¹) * 2**((¨<;¨¹�¨) ��i�(¨<é�X��¨¹Ĉ2��¨¹rĀ�2�power�
��0Ĉ(¨<ð��Ĉ�((¨<ð�X��¨¹) * 2**(-1) + ((¨<ð�X��¨¹) * 2**(-2) ….

�Ð~¢ >>> �~¢
�Ð~¢(Hexadecimal Numbers)ĉ0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A(10), B(11), C(12), D(13), E(14), F(15)
�Ð~¢��~¢�SĈå�þ-

B65F >>> 11*16^3 + 6*16^2 + 5*16^1 + 15*16^0 >>> 46687
�~¢ >>> p~¢ (�ü��Ë��)
�Ð~¢ >>> p~¢

å�þ-: 2C6B.F06
�� mĈf�o��¨¹,n�6�~¢�¨
2(2) C(12) 6(6) B(11).F(15) 0(0) 6(6)
^,nf�o�~¢�¨¹ª�p~¢�
(0010) (1100) (0110) (1011). (1111) (0000) (0110)

p~¢ >>> �Ð~¢
Ex: 10110011101.11011
(¨<é��¨¹Ĉwð�5�¨Ĉ���àĈ¸�
Ĉ�.;�À��� mĈ��`\ëøĈ(
¨<ð��¨¹Ĉwé�5�¨Ĉ���àĈ¸�
Ĉ�.;�À��� mĈ��;\ëø
0101 1001 1101. 1101 1000
^f:!ª6�~¢ĈD;��¸6�~¢���
5 9 D. D 8

drawCircle(Point centrePoint, int radius)

drawCircle(int centreX, int centreY, int radius)

\\Ӥᶎ鉖ӻᥝ穉ӥᶎ鉖ӻঅ牧ࢩԅ犢಩ݶ遞ጱӳᥜ᮷ࣁښԧӞ蚏ԧ

1
2
3
4
5

Roundoff Error
Only sum of power of 2 can be stored properly
(0.1)�~¢ = (0.0 0011 0011 0011 0011 0011…)p~¢
c/Z¼�#�fp~¢ûă�'���U�ÑuĈöd�Ă{Ã��,ĈKTĂ{Ã�Ĉ�¬
ERoundoff Error

Storage of Integers

 An “un-signed” 8 digit (one byte) binary number can range from 00000000(0 in base 10) to
11111111(255 in base 10)
Two’s Complement

Make the most significant bit(.é��4�) a negative number
þ-: .(�“signed”�¨¹�10000000, Ä²6�~¢�(-1)*2^7 >>> -128 in base 10
�v|B��oßĆ�Two’s Complement�p~¢l�~¢3��¨¹Ĉ

LO��Two’s Complement=\Ĉ4�:�¯²��F�
å�þ-ĉ10010101
� mĈ7�f.é��¨¹Ĉ¥1Ĉ¸6-1ĈD;y:�¯²Qº���ò�
4���¨¹��~¢=\�-107

c/� m�H@, byte ��integer type�A��range from -128-127
LO�!¡[Two’s Complement�ìÝ=\Ĉ���.��byte numberĈ¥01111111�ßĆ�^i1

LO��ï��i�¦²�SĈ��i�1�z610000000Ĉ¥��~¢��128
q��Two’s Complement=\Ĉ��i�1J;�z610000000, � m�z6î¨Ĉ¥-128
in base 10
So integer numbers wrap around, in the case of overflow. No warning from Java!

An int is stored in 4 bytes using Two’s Complement
An int range from:

10000000 00000000 00000000 00000000 to
01111111 11111111 11111111 11111111
¥��~¢=\� -2147483648 to 2147483647

Á¿�¸��factorial�Îêĉ
n! = n * (n-1) * (n - 2) * ….. 2 * 1
D;,nf�OÑ6int, long

 public static int intFactorial(int n) {
 int f = 1;

1
2

k�f�OÑ6int� mĈ�12!213!JYĈ��0gĈj�� m�OaV�0�int��µº�÷
Û
k�f�OÑ6long� mĈ�21!� mĈ�O�z6î¨Ĉ�Two’s Complement����Ĉk�
0÷ÛĈ��Wrap Aroundz6î¨�
� mĈ�!#/§8��¬E BigInterger class�Class

§8�BigIntegerJ;¨¹�z��½�)�Ĉq�j�§8 �¶Ą$���ÑaVCib�¦W
 YĈc/��fBigIntegerk6X��Ó

Storage of Real Numbers

Real Numbers(e¨)#/�Â��6�(¨Ĉ:!#/f¨ćą«
�Java=\Ĉ8
Ñe¨�|°¬EIEEE standard number 754
Like an float, is stored in 4 bytes or 32 bits

These bits consist of 23 bits for the mantissa, 8 bits for the exponent, 1 bit for the sign

The sign bit, s, can be 0 for positive and 1 for negative.

 if (n > 0)
 for (int i = 2; i <= n; i++)
 f *= i;
 return f;
 } // end intFactorial method

public static long longFactorial(int n) {
 long f = 1;
 if (n > 0) {
 for (int i = 2; i <= n; i++) {
 f *= i;
 }
 }
 return f;
 } // end longFactorial method

 public static BigInteger bigIFactorial(int n) {
 BigInteger f = new BigInteger("1");
 if (n > 0) {
 for (int i = 2; i <= n; i++) {
 f = f.multiply(new BigInteger(Integer.toString(i)));
 }
 }
 return f;
 } // end bigIFactorial

3
4
5
6
7

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

} '

The exponent, e, is unsigned. The standard says the exponent is biased by 127 and that the values 0
and 255 are reserved. So the exponent can range from -126 to +127. E is the unbiased value and e is
the biased value (E = e - 127).
Mantissa·���(¨<ð��U�¨¹Ĉalways less than 1.

��ÚÙ¯²Ĉ��0
:�Æ�0.011, D;��~¢=\�0.375
Maximum float.��floatÆ0B�k

s = 0 >>> positive
e = 254 >>> E = e - 127 = 127
¨¹�3.4028235E38
Float.MAX_VALUE

Minimum normal float.(�normal floatÆ0B�k
e = 1 >>> E = 1 - 127 = -126
f(mantissa) = 00000000000000000000000
¨¹�1.17549435E-38
Float.MIN_NORMAL

These are all “normalized” numbers because we are not using the reserved exponent values, 0 and
255
A “denormalized” (or “subnormal”) number has e = 0

	�denormalized¨¹Ĉfloat�÷ÛI#/ûb�(to 1.4*10^-45, Float.MIN_VALUE)
e = 0, f = 0 >>> -0/+0 (depending on sign bit)
e = 255, f = 0 >>> -Infinity/+Infinity (depending on sign bit) displayed as -inf/+inf
e = 255, f != 0 >>> NaN(Not a Number)

Double, (8 bytes) roughly ±4.9 x 10-308 to 15 significant digits(]F��§8IEEE754)
8 bytes ¤ô�52��mantissa, 11��exponent, &	���sign bit

double §8�standard2float�FĈc/8��2float�F�
The exponent, e, is unsigned. The IEEE754 standard says the exponent is biased by 1023(E = e -
1023) and that the values 0 and 2047 are reserved. So the exponent, E, can range from -1022 to
+1023 in base 10.

Maximum double.��doubleÆ0B�k
s = 0 >>> positive
e = 2046 >>> E = e - 1023 = 1023
¨¹�1.7976931348623157e308
Double.MAX_VALUE

Minimum normal double.(�normal doubleÆ0B�k
s = 0 >>> positive
e = 1 >>> E = e - 1023 = -1022
¨¹� 2.2250738585072014e-308
Double.MIN_NORMAL

Minimum double.(�doubleÆ0B�k(denormalized)
s = 0 >>> positive
e = 0 >>> E = e - 1023 = -1023
¨¹� 4.9E-324
Double.MIN_VALUE

Special Values
NaN
POSITIVE_INFINITY
NEGATIVE_INFINITY

�o�ì÷�õ_#��Øâĉ

 >>>>>>>>>>

Standard] &Êè�!.�¿È�oflag(�}expection)'Öã�Þ?9�1%
Numbers like 0.1 that can be written exactly in base 10, but cannot be stored exactly in base 2.
Real numbers (like pi or e) that have an infinite number of digits in their “real” representation can only be
stored in a finite number of digits in memory
Windows Calculator:

Can provide 32 accurate digit
It is the CPU that may have built-in support for 10 or 12 byte numbers
Calculator also stores rational numbers as fractions to retain accuracy. For example, 1/3 is stored as
1/3, rather than .333

strictfp
This is a Java modifier that can be used in either class or method headers
�¯²$Î�Ĉ:�fc	¯²$Î�0B�¨¹�8Ü�IEEE754/��Ci�½�Q�'úÑĈ
7	���O� mĈR�ÄMIEEE754�Q�'úÑ

}�\��®³Ĉ���¯²10000�0.1�2Ĉ3[
Þ
"Ĉ�!)£­¯²0
����O�1000Ĉq�3
[Z¼
"Ĉ0.1��Tu»úÑĈc/PG¯²��ù��o�çÆ

Roundoff Error

For the code above, it prints a result of 999.9029 to the screen
If sum is declared to be a double then the value: 1000.0000000001588 is printed to the screen.
the individual roundoff errors have piled up to contribute to a cumulative error in this calculation
 the roundoff error is smaller for a double than for a float.

Big Decimal Class #/f�ç�©N�´�āÇĈq��§8BigDecimal� mĈeffiency�íÌ

Machine Epsilon

ε is the largest positive value that when added to 1 still produces 1, ie: 1 + ε == 1
“Too small to make a change”
For float: 5.9604645E-8
For double: 1.1102230246251565E-16
Observations

If you are subtracting two numbers and the difference between the numbers is less than ε, then you
will get zero
If you are adding two numbers, n1 and n2, and n2/n1 < ε, then you will get n1.

float sum = 0;
for (int i = 0; i < 10000; i++)
 sum += 0.1f;
System.out.println(sum)

1
2
3
4

Fall 2018 CISC124 9/26/2018

Prof. Alan McLeod 1

Fall 2018 CISC124 - Prof. McLeod 1

CISC124

• Assignment 1 due this Friday, 7pm.

• Quiz 1 Next Week. Topics and format of quiz in
last lecture’s notes.
– The quiz will cover the material discussed up to

the end of today’s lecture. (Even if I don’t finish
what is in the slides.)

Today

• Finish Numeric Representation:
– Roundoff Error Demo – Summing 0.1
– Machine Epsilon.
– Effects of Roundoff Error.
– Kahan Summation Algorithm.
– Alternating Sign Summations.

Fall 2018 CISC124 - Prof. McLeod 2

Fall 2018 CISC124 - Prof. McLeod 3

Roundoff Error – Cont.

• Compute:

• And, compare to 1000.

float sum = 0;
for (int i = 0; i < 10000; i++)
sum += 0.1f;

System.out.println(sum);

Aside - BigDecimal Class

• For when you need a floating point numeric type
that does not have any limit to the number of
digits you can store (how much RAM you have!).

• However, it is usually a good idea to specify the
scale of the numbers you wish to use.

• See SumPointOne.java.

• Why not use BigDecimal for everything?

Fall 2018 CISC124 - Prof. McLeod 4

Fall 2018 CISC124 - Prof. McLeod 5

Machine Epsilon - ε

• ε is the largest positive value that when added to
1 still produces 1, ie:

1 + ε == 1

• Let’s find out what this value is for floats and
doubles (see DetermineEpsilon.java).

Fall 2018 CISC124 - Prof. McLeod 6

Machine Epsilon – ε, Cont.
• For float: 5.9604645E-8
• For double: 1.1102230246251565E-16

• If you are subtracting two numbers and the
difference between the numbers is less than ε,
then you will get zero.

• If you are adding two numbers, n1 and n2, and
n2/n1 < ε, then you will get n1.

t
using big decimal will

affect the effing .
also

, it

consumes memory

a
"
too Small to make a

change
' '

→
nz is too smaller than Nl ,

therefore , n2tnl=n1

Fall 2018 CISC124 9/26/2018

Prof. Alan McLeod 2

Fall 2018 CISC124 - Prof. McLeod 7

The Effects of Roundoff Error

• Consider subtracting two numbers that are very
close together:

• Use the function

for example. As x approaches zero, cos(x)
approaches 1.

Fall 2018 CISC124 - Prof. McLeod 8

The Effects of Roundoff Error – Cont.
• Using double variables, and a value of x of

1.0E-12, f(x) evaluates to 0.0.
• But, it can be shown that the function f(x) can also

be represented by f’(x):

• For x = 1.0E-12, f’(x) evaluates to 5.0E-25.
• The f’(x) function is less susceptible to roundoff

error.

Fall 2018 CISC124 - Prof. McLeod 9

The Effects of Roundoff Error - Cont.

• Another example. Consider the smallest root of
the polynomial: ax2+bx+c=0:

• What happens when ac is small, compared to b?
• It is known that for the two roots, x1 and x2:

Fall 2018 CISC124 - Prof. McLeod 10

The Effects of Roundoff Error - Cont.

• Which leads to an equation for the root which is
not as susceptible to roundoff error in this case:

• This equation approaches –c/b instead of zero
when ac << b2.

Fall 2018 CISC124 - Prof. McLeod 11

The Effects of Roundoff Error - Cont.

• These are examples of the two rules shown on
the Epsilon slide (#6). What to watch for:

• A small difference between two large numbers.
• Adding a number that is too small to make a

difference to a large number.

Summations - Convergence

• The rules on slide 6 also affect summations.
• Before looking at this – we should look at how you

do summations on a computer.
• Since you can’t sum to infinity (why not?), when

do you stop a summation?
– See Part 6 in Exercise 4 for one simple technique:
– Stop the summation when the previous sum equals the

current sum.
– In other words the latest term in the summation follows

the second rule on slide 6.

Fall 2018 CISC124 - Prof. McLeod 12

REEF. it thetas that .EE#Ii7EEE-t&saFsTE7E , sa '¥¥it¥¥fN

QISHAN , 73k¥ round off error '¥¥ka

-HE has t

FATEH '£2¥z¥HE Fat KEEFE Big
.tt#AfxkEroundo-tteworBE%a47

a

→ whole thing will
be

a- I equal
for

=b⇒o
Be

£ t

I

* HERE'S 'E{ nt¥EiaoH

round off error
xfE¥¥eHaG*tT¥¥k

/Eza¥4E

±txfqbnG

Fall 2018 CISC124 9/26/2018

Prof. Alan McLeod 3

Summations Convergence, Cont.

• The exercise also demonstrated the need to
choose summation formulae that provide rapid
convergence.

• This minimizes the effect of roundoff error and
greatly reduces the computation time.

• You can also make algorithmic choices that will
improve the accuracy of your summations:
– Kahan summation algorithm.
– Alternating +/- summation trick.

Fall 2018 CISC124 - Prof. McLeod 13 Fall 2018 CISC124 - Prof. McLeod 14

Summations: Relative Magnitude Problem

• For example, consider this simple arithmetic sum:

• Let’s fiddle with it a bit:

• Print out the values of the sum for n = 10, 100,
1000, etc. (see FiddledArithmeticSum.java)

Fall 2018 CISC124 - Prof. McLeod 15

Fiddled Arithmetic Sum, Cont.

• Math tells us that the summation should be 1
regardless of the value of n.

• For a float, results show:

• What is going on for large value of n?

n = 10, sum = 1.000000
n = 100, sum = 1.000000
n = 1000, sum = 1.000000
n = 10000, sum = 1.000000
n = 100000, sum = 0.999999
n = 1000000, sum = 0.999900
n = 10000000, sum = 1.002663
n = 100000000, sum = 0.500000

Fall 2018 CISC124 - Prof. McLeod 16

• So the sum stalls out at 0.125, 0.25 and 0.5

Plot of sum versus index, for 100,000,000

Fall 2018 CISC124 - Prof. McLeod 17

Fiddled Arithmetic Sum, Cont.

• On the plateau areas of the plot, for a while, terms
are too small to make a difference to sum, so
these terms are lost.

• If you had some way to grab these “lost” terms
and shove them back into the sum it should end
up being closer to 1.0 again…

Fall 2018 CISC124 - Prof. McLeod 18

Kahan Summation Algorithm

• (William Kahan, a Comp. Sci. Prof at Berkeley,
was into numerical computing and in the 80’s led
the committee that developed the IEEE754
standard.)

• Also called “Compensated Summation”:

Calculate the portion of the term that does not
contribute to the sum and then carry that portion
to the next summation.

Et En 563k£
,t.dz#EhtEiIe

I

¥ HYE, Isn 4 ,

snh.GE#TEEtZHEeEAEEAYJ

LIE In 'E¥F¥Ehi¥E¥b¥¥t HE
epsilon

,

HE ¥12 E FLEE

55¥21 's

Fall 2018 CISC124 9/26/2018

Prof. Alan McLeod 4

Fall 2018 CISC124 - Prof. McLeod 19

Kahan Summation Algorithm, Cont.

Calculate the portion of the term that does not contribute to
the sum and then carry that portion to the next summation.

sum

term

tempsum

sum

portion
…

term

+

-
-

Correction for the
next addition
(remainder)

Fall 2018 CISC124 - Prof. McLeod 20

Using Kahan Sum

• See KahanSum.java

Fall 2018 CISC124 - Prof. McLeod 21

Remember our “Trouble Spots”?

• If you are subtracting two numbers and the
difference between the numbers is less than ε,
then you will get zero.

• If you are adding two numbers, n1 and n2, and
n2/n1 < ε, then you will get n1.

• We now have a technique to help us with the
second problem for summations.

• How about the first one?

Fall 2018 CISC124 - Prof. McLeod 22

Small Difference Problem
• Here’s another “demo” series, this one created by

Ramanujan (a famous Indian mathematician, who created
many amazing formulae in the early 1900’s.)

• Note the alternating signs, and 0! is 1.
• See RamanujanSum.java.

Fall 2018 CISC124 - Prof. McLeod 23

Small Difference Problem, Cont.
• Using double’s the sum converges to:

4.960779927438127E-15
not zero.

• What’s going on?
– Hint: remember the alternating sign.
– The sum is trying to get the difference between

successive terms that are close in magnitude towards
the end of the summation.

• How to get around the problem?

Fall 2018 CISC124 - Prof. McLeod 24

Small Difference Problem, Cont.

• How about adding all the negative terms to one
sum, and all the positive terms to another sum,
until neither sum is changing and then take the
difference?

• See RamanujanSumFixed.java.

• This technique works well for these alternating
sign sums.

-
-

-
-- --

-
-
-

-

-
-

-

Fall 2018 CISC124 9/26/2018

Prof. Alan McLeod 5

Numeric Representation, Cont.

• Your understanding of the limitations of how
numbers are stored on a computer will help you
design computational code wisely!

• Work, work, work!:
– You are now ready for exercise 4 and

assignment 2.
– The file I/O techniques covered in exercise 5

will not be discussed in class, but you can do
this exercise now.

Fall 2018 CISC124 - Prof. McLeod 25

QUiZ 2 Prep

Everything up to and including tomorrow’s material:
– Quiz 1 Java topics, but not Java History or Background (“How Java Works”).
– System, String, StringTokenizer, Wrapper classes.
– Method Overloading. – Catching, Building and Throwing Exceptions.
– Aliasing Objects, Passing by Reference.
– 2D Arrays. – Objects in general. Instantiation.
– Encapsulation
– private attributes, constructors, accessors, mutators and other standard methods.
– Exercises 1 to 9.
– File I/O from Exercise 5 – concepts only
– you won’t have to write file I/O code.
– Unit Testing – concepts only – you don’t need to write testing code.
– TDD.

System, String, StringTokenizer, Wrapper classes.

The class defined in the java.lang package are automatically impirted for you, since they are used quite
often
Java.lang package includes:

The Wrapper classes
Math
Object
String
System
Thread
 ——> �pÅÕ�"-xAPI1=E>üjava docý

Aside: static Methods:
static attributes and methods are loaded once into memory and not garbage collected until
main is finished. These methods will run faster the second time (and later) they are invoked.
static methods can be invoked without instantiation of the Object that owns them. Math.random(),
for example.
static methods and attributes are shared by all instances of a class – there is only one copy of
these methods in memory.
A static method can only invoke other static methods in its own class – you can’t have
pieces of code disappearing from a static method in memory…

ÀÂÒíúüstaticý
6�Òí3�{�ÿ

3�{�RstaticÒíþ�§BÀÂ3�{�þHL'	Òí§³ÀÂ3�{�

=

ÀÂ3�{��ô�O¾ÿ
60Ô~Uô�þE><½�¬�ÿ0Ôd.{�d
�#Úd��ô�ÿÚd.{�d

�
¯�O¶�gc	�{�Äß�ÀÂþ5	l¢Ø4v�
ÑT�P�
6staticô�
³ÀÂ{�5�60Ô�ô�þ��6Ú�ô�

ÀÂ{�­(�ÚW��k�Gk�þ­(ÚW��¸�G¸�
Instantiationüf÷¤ýÿ

�&��#�" ��%���!���#�$ ���

�������

� Date date=new Date();�����!��	������#����#��

�

Math Class
A collection of static constants and static mathematical methods

Wrapper Classes*
Sometimes it is necessary for a primitive type value to be an Object, rather than just a primitive type.
Some data structures only store Objects.
Some Java methods only work on Objects.
�java=]þ	�pmethod¨¥��õ5�6�object�]þ�
class���gprimitive typeÍ��

object
Wrapper classes also contain some useful constants and a few handy methods.
Each primitive type has an associated wrapper classÿ

á���primitive typeþç�0���8�wrapper class
N
�^�wrapper class�object�"-óÍj�primitive type=�¢Øþt�?�� "-
�6�pZ��j���
class�method

�]�p�ð0Integer�þG�double=]�	�D�method
�-��O��þV�
6�instantiate�O�þbSdepreciatedÆ�

-

-

-

?�API@r���6Integer.valueOf()
Do: Integer aTest = Integer.valueOf(42);

Aside - depreciation:
somthing that has been taken out from language

The Character wrapper class:
has methods to convert between ASCII and Unicode numeric values and characters.
isDigit(character) returns true if character is a digit.
isLetter(character)
isLetterOrDigit(character)
isUpperCase(character)
isLowerCase(character)
isWhitespace(character)
toLowerCase()
toUpperCase()

System Class*
System.currentTimeMillis()

Returns, as a long, the number of milliseconds elapsed since midnight Jan. 1, 1970.
�
method�ª®��invoke��
method��nþthe number of milliseconds elapsed
since midnight Jan. 1, 1970þHL��Ëâ�2�º�
þ�Ëâ�è��n�º�
þ1�
g8 æuÙ%þ�"-���
��Ëâ�U��Y
$	Ì�
conversion6�extract the day from the value

System.exit(0)
Immediate termination of your program.

System.getProperties()
All kinds of system specific info

System.nanoTime()
Time in nanoseconds

String Class
Escape sequences in Strings:

These sequences can be used to put special characters into a String:
\” a double quote
\’ a single quote
\\ a backslash
\n a linefeed
\r a carriage return
\t a tab character

String method(�Ñ	67
):

length()
equals(OtherString)
equalsIgnoreCase(OtherString) // ��à�&º�wÖ
toLowerCase()
toUpperCase()
trim()
charAt(Position)
substring(Start)
substring(Start, End) // stops one location before end
indexOf(SearchString) // return -1/expection if it can’t find the string
replace(oldChar, newChar)
startsWith(PrefixString)
endsWith(SuffixString)
valueOf(integer)

String is immutable - they cannot be altered, only can be re-assigned
However, Arrays are mutable, in contrast - any element can be changed

Other java.lang Classes
Object class
Thread : a base class used to create threads in multi-threaded program.

StringTokenizer Class*
This class is not in java.lang, this is in java.util.
you need to have an import java.util.*; or import.java.util.StringTokenizer;
This class provides an easy way of parsing strings up into pieces, called “tokens”
Tokens are separated by “delimiters”, that you can specify, or you can accept a list of
default delimiters.
The constructor method for this class is overloaded.
So, when you create an Object of type StringTokenizer, you have three options:

new StringTokenizer(String s) //�=Äß�delimeter�default delimeterÿ\t\n\r, space, tab,
line feed, carriage return
new StringTokenizer(String s, String delim) //delim����:Î|Äß�delimeter
new StringTokenizer(String s, String delim, boolean returnTokens) //9]�booleanHL�
true�Qþ1�,9ruturnJ����ødelimeterZi

l

ltoken remove�F9þStringTokenizer Object �R���þ�
z�tokenize�Qþ5�z
�ÏÈ
Scanner Class Tokenizer

The Scanner class has a tokenizer built into it
Scanner uses a regular expression or “regex” instead of the (easier to
understand, but less powerful!) delimiter list.
The default regex is: "\p{javaWhitespace}+" which means “any number of whitespace
characters”
A whitespace character is a space, a tab, a linefeed, formfeed or a carriage return
" \t\n\f\r" in other words.

Method Overloading
 “Overloading” is when a method name is used more than once in method declarations
within the same class. (also like println()…)
���������method declare�class����
�method name���������/�
��variable�method name�	��

The rule is that no two methods with the same name within a class can have the same number
and/or types of parameters in the method declarations. (The “NOT” rule.)
·�ÿ

û¼6¿�¡6�
method��n"-�6supply1��argument
�
method"-0�^�¢ØÚÐB.action
Allows the programmer to keep an old method definition in the class for “backwards
compatibility”.

HL½É�µ{×ÝËâ�0�
method���þoverloading"-�ÓFa�
difinitionxG£KËâ��¡6

How does it work
Java looks through all methods until the parameter types match with the list of arguments
supplied by the user. If none match, Java tries to cast types in order to get a match.

(Only “widening” casting like int to double, however)(�¡java
castþ�5�Û(1
Ûâ
cast)

Do not change the return type!!
Exceptions

Exception is another way to get something out of a method.
Exception is thrown, not returned
Exception is Objects
When an error condition is encountered, a method can throw an instance of a pre-defined exception
Object.
A method can throw several exceptions, one for each possible kind of error condition.
If a method throws an exception, then that method is immediately halted and there is no need
for any return value, even if the method is non-void.
ExceptionZi��"-0Ëâ`.«��Òµ�þt�8"-ÊÞ�
Ëâ
�]�method�receives �
Rthrow.��exception�þHL�
method'	ä��
exception
�Qþ1���invoke��
methodþHL��'ä�þ� ���mainþ�
#Ë§Bcascadingþ
HL��main$'	Rä��Qþ1Ëâ��crashþFinally, if main does not catch the exception,
your program crashes and a message is sent to the console window.
Exception Object:

Type of the Object:
IOException
NumberFormatException
FileNotFoundException
ArrayIndexOutOfBoundsException
…

c-0[Äª¥�!þ��Äª�
mFuy�exception
Exception$"-�éString message
5
�invoke��
throw exception�method�Qþcomplier�force�%6try/block

�try block9]þ²å
	´��
exception
The code in the “finally” block is always executed, whether an exception is thrown, caught, or
not.

Checked vs Unchecked Exceptions
Unchecked Exception��.?�Error Class�Errorþ�phì��Exceptionþserious

try {
// block of statements that might
// generate an exception
} catch (exception_type identifer) {
// block of statements
}[catch (exception_type identifer) {
// block of statements
…
}][finally {
// block of statements
}]

1
2
3
4
5
6
7
8
9

10
11

problemþ���#Òµ����
particular code�"-µ#��. Unchecked exceptions
occur only at runtime and the compiler does not care about them.(OutOfMemoryError,
StackOverflowError, VirtualMachineError)
Checked Exception��e
R��code=]��
methodä��þ�"-�#ÒµcodexG
òÁ�(IOException, FileNotFoundException, ClassNotFoundException)

Try With Resources

	��nHL��©°Î|�0¦
W�`ë`�QþHLë`��
methodgW�\2�þÇ�
�exceptionþmethodÊÞþ"�W��'	y�
t��Try with=]þtryñ��ø \2��
W�þ5
�
©°try��èþ1���y��

file

Array
To create an array to hold 10 integers: int[] testArray = new int[10];

var testArray = new int[10];
��]�declareF9þE>��nþtestArray5��
pointerþ8point to an area of memory

try (instantiation; instantiation; …) {
// other statements that might
// generate an exception
}[catch (exception_type identifer) {
// block of statements
}][catch (exception_type identifer) {
// block of statements
…
}][finally {
// block of statements
}]

public class IllegalHalloweenException extends Exception {

 /**
 * Supplies a default message.
 */
 public IllegalHalloweenException() {
 super("Illegal parameter value supplied to Halloween object.");
 }

 /**
 * Passes along the message supplied to the exception.
 * @param message A more specific message.
 */
 public IllegalHalloweenException(String message) {
 super(message);
 }

} // end IllegalHalloweenException

1
2
3
4
5
6
7
8
9

10
11

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

that holds locations for 10 integers
It also points to one location that holds testArray.length which is an attribute of the array, that is
equal to the number of elements.
^�� �declare array��nþ�"-*2º

int[] testArray;
testArray = new int[10];

�D+º����n� E>þtestArray is now an object of type int[] that contains an
“object reference” or a pointer. The object reference is null after the first statement.
l� ��VqU��nþ�
�nþ8point to an area of memory that holds locations for
10 integers

Ã
java�~U�
ë`�#Ë��D�þ�
�nþjavaE>� �
array=]Í�ïe
�integerþN�
�4 byteþ1�HLÍ�Ü
¢»þ��9*4 = 36 byteþl� î}�
¢
»þwH!4þjava�®.�1
�nþ�Íö6�16 byteþ1���ã.0��¢»

Multi-Dimensional Alrrays

s�8��n�"-s�3þ�
��pointerþpoint��
arrayþarray=]N�
elem��
�
&pointerþA9_*opoint�array�
0[V�
Ípointer�array=]Í�pointer�!þ8 point%�array��e
�
size�

Aliasing Object
�
�X±�!þHL	I
Arrayþfirst/second��I
bSR¹���pointerþ��C7ê
�þ;second = firstþ�D�Qþsecond��3��
¹�firstc¹��Array�pointerþ1��

�nþsecondZ�¹��Arraay�{3�garbage

Java has an automatic Garbage Collection system: – Variables are garbage collected once you
move outside their scope. – Object contents are garbage collected when there are no pointers
pointing to the contents.

Passing Parameters by Reference
��!g�
Array pass~�
method=]þ�D�Qþ�parameter��nþparameter=]�
array��/�]�array aliasing)�þc-µ{=]�pointer0��array��µ{�]�
The rule for parameter passing into methods is: – Objects are passed by reference, primitive types
are passed by value
So, mutable Objects (like arrays) can be passed into and out of a method through the parameter list.
If a method changes the contents of a mutable Object passed into it – those changes “stick” even
when the method is complete.

Array Equality
This test will only give a true when both objects have been aliased, using the assignment operator
“=“.
So, even if both arrays have identical contents, “==“ will return false, unless both arrays point to the
same location.
This means that comparing Objects with “==“ only compares pointers, not contents.

Null Pointer or Null Reference
Null is not a keyword in Java – more like a literal constant.
Use Null == Arrayname to test if Arrayname is null pointer

Objects in general
What is an Object?

An entity that exists in an operating computer program that has:
– State

is the collection of information held in that object. This information may change over
time, as a result of operations carried out on the Object.

– Behaviour
is the collection of operations that an Object supports.

– Identity
allows the program access to a specific Object.

�
"-óÍM�þ�0M�~Uë`þ�"-ù$�pM��0Ô

What is a class?
If each of these Objects has the same set of possible behaviours then you can
group these Objects together into a Class
 A class is defined in the source code of a program.

The operations that are allowed on instances of this class (the methods).
The possible categories of state that are allowed for instances of this class (the
attributes).

However, attributes cannot be added or removed and behavior cannot be added
or removed. These are defined in the Class.

Object Categories
– Tangible things (ex: Cat) >>> a real object
– Agents (StringTokenizer) >>> acting on other object
– Events and transactions (MouseEvent)>>>interact with user
– Users and roles (Administrator)
– Systems (MailSystem)
– System interfaces and devices (File)
– Foundational classes (String)

Object Structure
Two extremes of object structure:
– Utility classes:

All static methods and attributes
– The Math class, for example.
– You do not instantiate these classes – there is no point.

– Customizable classes:
All non-static methods and attributes.
Attribute values (some or all) must be set at the time of instantiation before the class
can be used.
Scanner class for example.

And many classes fall in-between these two extremes:
– A mix of static and non-static methods.
– static methods have nothing to do with the attributes and so can be used without
instantiation of the class.
– Non-static methods depend on the attributes which must be set through
instantiation.
– Wrapper classes for example: Double, Integer, etc.

Encapsulation
Encapsulation is the process of defining a Class that has at least one customizable
attribute.
In Java, methods and attributes must be encapsulated or contained in a class definition.

IllegalHalloweenException.java

/**
 * An Exception thrown by the Halloween4 Object if parameters are not legal.
 *
 * The year must be between 1959 and 2016 inclusive.
 * The number of kids must be between 0 and 500.
 * The temperature values must lie between -30 and 30.
 * The weather condition can be "rain", "snow" or "clear". The default condition is
"unknown".
 *
 * @author Alan McLeod
 * @version 1.0
 */

public class IllegalHalloweenException extends Exception {

 /**
 * Supplies a default message.
 */
 public IllegalHalloweenException() {
 super("Illegal parameter value supplied to Halloween object.");
 }

 /**
 * Passes along the message supplied to the exception.
 * @param message A more specific message.
 */
 public IllegalHalloweenException(String message) {
 super(message);
 }

} // end IllegalHalloweenException

1
2
3
4
5
6
7

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

⇐BE 'T Exception class tag It

y-EBE-Tdefauktafmessage.EE#7EI3u
¥E8F¥4G#ik4EHI .tt#oxt4IFGB
String message

Halloween5.java

import java.io.Serializable;

/**
 * A class to store Halloween information.
 * <p>
 * The year, the number of vistors, hourly temperatures in deg C and the weather condition
is recorded. This class
 * has been created as a lecture example, and is not otherwise particularly useful!
 * <p>
 * This version demonstrates the implementation of Comparable (for sorting) and Serializable
(for
 * filing). Also, the mutators for temperature and weather condition have been combined, so
both
 * attributes have to be set at the same time. In this way they cannot be set to an illegal
value
 * independently.
 *
 * @author Alan McLeod
 * @version 3.2
 */
public class Halloween5 implements Comparable<Halloween5>, Serializable {

 private static final long serialVersionUID = 4705089863030936649L;
 private int year;
 private int numMunchkins;
 private int[] temperatures;
 private String weatherCondition;

 /**
 * Full parameter constructor.
 * @param yr The year when the data was collected.
 * @param numKids The number of Trick or Treaters!
 * @param temps The air temperatures in degrees Centigrade in an array of int of any
size.
 * @param weather The weather condition: "clear", "snow" or "rain".
 * @throws IllegalHalloweenException If arguments are not legal.
 */
 // 4 parameter constructor invokes mutators
 public Halloween5(int yr, int numKids, int[] temps, String weather) throws
IllegalHalloweenException {
 setYear(yr);
 setNumMunchkins(numKids);
 setWeather(temps, weather);

1
2
3
4
5
6

7
8
9

10

11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34

35
36
37

Attributes must be declared as private , so that

the class that owns them can control how they
are set

must

be
→

public
→ - T constructor , to set all parameters

 } // end Halloween4 4 parameter constructor

 /**
 * Three parameter constructor. The weather condition does not have to be supplied.
 * @param yr The year when the data was collected.
 * @param numKids The number of Trick or Treaters.
 * @param temps The air temperatures in degrees Centigrade in an array of int of any
size.
 * @throws IllegalHalloweenException if arguments are not legal.
 */
 // 3 parameter constructor invokes 3 parameter constructor with an assumption about the
 // weatherCondition attribute
 public Halloween5(int yr, int numKids, int[] temps) throws IllegalHalloweenException {
 this(yr, numKids, temps, "unknown");
 } // end Halloween4 3 parameter constructor

 /**
 * Sets the year the data was recorded.
 * @param yr The calendar year.
 * @throws IllegalHalloweenException if the year does not lie between 1959 and 2016
 */
 public void setYear(int year) throws IllegalHalloweenException {
 if (year < 1950 || year > 2018)
 throw new IllegalHalloweenException("Illegal year: " + year);
 this.year = year;
 } // end year mutator

 /**
 * Sets the number of kids.
 * @param numKids The number of kids arriving at the door.
 * @throws IllegalHalloweenException if the number of kids is less than zero or greater
 * than 500.
 */
 public void setNumMunchkins(int numKids) throws IllegalHalloweenException {
 if (numKids < 0 || numKids > 500)
 throw new IllegalHalloweenException("Illegal number of kids: " + numKids);
 numMunchkins = numKids;
 } // end numMunchkinds mutator

 /**
 * Sets the temperatures array and the weather condition String. The temperatures are
 * recorded with one temperature per hour.
 * @param temps An array of temperatures between -30 and 30 degrees C.
 * @param weather The weather condition as a String.
 * @throws IllegalHalloweenException if the condition is not "rain", "snow", "clear" or
"unknown",
 * or if the array is empty or any temperatures are not legal.
 */
 public void setWeather(int[] temps, String weather) throws IllegalHalloweenException {
 double avgTemperature = 0;
 if (temps.length == 0)

38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82
83
84
85
86

I

←
⇐¥gtiBz mutation ,

FHiB

'

¥1 private - * aft

the
.

25221¥51 attribute
'Et

kg ' '¥ EktaFIG

 throw new IllegalHalloweenException("No temperatures supplied");
 for (int temperature : temps) {
 if (temperature > 30 || temperature < -30)
 throw new IllegalHalloweenException("Illegal temperature in array: " +
temperature);
 avgTemperature += temperature;
 }
 temperatures = temps.clone();
 avgTemperature = Math.round(10 * avgTemperature / temperatures.length) / 10.0;
 if ((weather.equalsIgnoreCase("rain") && avgTemperature > -5) ||
 (weather.equalsIgnoreCase("snow") && avgTemperature < 5) ||
 weather.equalsIgnoreCase("clear") || weather.equalsIgnoreCase("unknown")) {
 weatherCondition = weather;
 } else
 throw new IllegalHalloweenException("Illegal weather/temperature combination: "
+
 weather + ", " + avgTemperature + " deg C.");
 } // end setWeather mutator

 /**
 * Returns the calendar year the data was recorded.
 * @return The year the data was recorded.
 */
 public int getYear() {
 return year;
 } // end getYear

 /**
 * Returns the number of visitors.
 * @return the number of Trick or Treaters.
 */
 public int getNumMunchkins() {
 return numMunchkins;
 } // end getNumMunchkins Accessor

 /**
 * Returns the temperatures array.
 * @return The temperatures in degrees Centigrade.
 */
 public int[] getTemperatures() {
 return temperatures.clone();
 } // end getTemperature Accessor

 /**
 * Returns the weather condition.
 * @return The weather condition as a String.
 */
 public String getWeatherCondition() {
 return weatherCondition;
 } // end getWeatherCondition Accessor

87
88
89
90

91
92
93
94
95
96
97
98
99

100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

←
ELITE access or ,

227¥55 Kirat ersatz

 /**
 * A String representation of the current object.
 * @return A String representation of the contents of the object containing the values
of
 * all the attributes.
 */
 // Overrides (replaces) the toString method of the Object class.
 @Override
 public String toString() {
 String s = "In " + year + " there were " + numMunchkins + " kids. Temperatures each
hour were: ";
 for(int i = 0; i < temperatures.length - 1; i++)
 s += temperatures[i] + ", ";
 s += "and " + temperatures[temperatures.length - 1];
 s += " deg C., and the weather was ";
 s += weatherCondition + ".";
 return s;
 } // end toString

 /**
 * Tests two Halloween5 objects for equality.
 * @return <code>true</code> if all the attributes of both objects are exactly equal,
<code>false</code>
 * otherwise.
 * @param otherObject The other Halloween5 object.
 */
 // Overrides the equals method of the Object class.
 @Override
 public boolean equals(Object otherObject) {
 if (otherObject instanceof Halloween5) {
 Halloween5 otherH = (Halloween5)otherObject;
 boolean arrayCheck = true;
 if (otherH.temperatures.length != temperatures.length)
 return false;
 for(int i = 0; i < temperatures.length && arrayCheck; i++)
 arrayCheck = temperatures[i] == otherH.temperatures[i];
 if (arrayCheck)
 return year == otherH.year &&
 numMunchkins == otherH.numMunchkins &&
 weatherCondition.equalsIgnoreCase(otherH.weatherCondition);
 } // end if
 return false;
 } // end equals

 /**
 * Compares Halloween5 objects on the basis of the number of visitors only.
 * @param otherH The other Halloween5 object.
 * @return A negative <code>int</code> if the supplied object had more vistors, zero if
they have the same
 * number and a positive number if the current object has more visitors.
 */

136
137
138

139
140
141
142
143
144

145
146
147
148
149
150
151
152
153
154
155

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

181
182

-

&

mum &

 public int compareTo(Halloween5 otherH) {
 return numMunchkins - otherH.numMunchkins;
 } // end compareTo

 /**
 * Returns a copy of the of the current Halloween5 object.
 * @return A copy of the current object.
 */
 // Overrides the clone method in the Object class.
 @Override
 public Halloween5 clone() {
 Halloween5 hwCopy = null;
 try {
 hwCopy = new Halloween5(year, numMunchkins, temperatures, weatherCondition);
 } catch (IllegalHalloweenException e) {
 // Should never get here!
 return null;
 } // end try/catch
 return hwCopy;
 } // end clone

} // end Halloween5

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

mm

&

Javadoc {
am

*

Method Reference
FEE 'VE .tt#hI3sjtxfEEJgtEHFIT object 4 Gf method / content

EkkaGA class 4 , has - T Array List of type object , Array List 24 db
,

db .
sort C Object : : come are by Age) ;

mmmm
t

Ekg - T It ' ' object " class & AG method

Lambda Function
fEkiE¥ - T interface ,

¥FIIF - T abstract method CHF method header
, 22422¥ #

'

'

 GA) , Atx , # til Ei¥ - T Anonymous Class / Lambda Function ¥¥t¥uEEkEt# ¥4 method

Had :

⇐ ftp.EE-TEE#txf interface , II. 4 ,
send Greeting

'

ET method BE - 'T abstract method

.

.

.
 I '¥F¥ Eoxf¥kt¥u

BEBEKtape
←

I → E'FEEL lambda function BfBh¥# if entire sente

2¥ - Tara meter → ¥tEF§

.si#t%FEfy'BTearameeer-7fnabeEI.I

① ¥57 eat a meter ' Hear amdatd

* * !, . . , . ,

{
⇐ * ⇐ ramen . ¥

③ → t.sk#EE method body
, body khz - takagi , too

E3
* 2¥ EE it ¥3 .fr#ff - T abstract method Got Functional Interface I

murmuring

' TInterface
KEG abstract method FEES Lambda Function Gf ZEFF

* Functional Interface : Eff - IT abstract method Gf interface
nrrrrrrrrrrrrrrrrrrrnrrrrnvr

Genetic class

* Kind of like having a parameter ¥ class header 't , EEE 'T ' '

Parameter
' '

FEE Pass HITS

reference

* An Example

⇒ HEH ⇒

⇒ Flit # FITITF object type I
,

K¥3 Exertion

⇒ Ilford # It primitive type I

#z§EE¥€t class # Aa - T constructor BATI ⇒ public Sample CT new Data) {
data = new Data

.

clone c I j

Automatic boxing -

.

Eea - TIENE Generic class GA - T advantage , .IE?EIEfiJafIfTobjectL#k3I3gt4e
k¥867 'D HIFI # instantiate A ET object , ftp.3zt-ZFE#A , genetic class Er GEBERT ,

box FEEL

4ft : →
Fi Ag instantiate

me

Automatic un boxing : ¥48473 - T Away List Isaf -4¥ , FrtTIfEfEEf3zH¥ , TIN - T

primitive type
Ff : double aval = my List

. get Co) ;

, fort specifies a type

⇒ can use interface and abstract class

Generic Class :

Bounding :

* ¥ Generic class header KILL Surly any number of parameters : able class Sample L Ti , I > {

* THAT # extends I super EAT key word I ,tK&bE# ¥84 object type

,,¥,z {
LT extends Root Class 7 : E4zEEk Root Class GG

upper

2 T extends Root Class & Pizza 7 : ? TIE 'The Root class # Pizza tag
} bound

LT Suter Integer 7.

?TzEEKInteger, Number
,

Object Gf → lowerbound

⇒ bounding 3253
,

#¥5¥E¥¥fEoF¥GA method body & ,
T theft if bound & BG class Bt

method

Genetic Method :

* Aa Generic class hat''Ex§zF§ ,
Et '3zxfg method Eu Is

String mid = Utility . gee Midpoint Cb) ;

⇒ invoke ⇒
FiIEEE 27murmur

Some Exception :

Integer mid I -

- C Integer) Utility . get Omid point caring so ; →
' ' class Cast Exceeeio 's

Integer mid I -
- Utility . 2 string > get Midpoint Cbs 's → Com zaliation Error

* Constructors can also be generic .
Even in

a non - genetic class

Genetic Wildcards :

* A wildcard is the ? within the a a ,
A wildcard can provide a sweet LIFER,

type genetic class for other generic classes

HIT : Array Lists ? > alobj = Away List < Shinde> c) j

I child of ?

* Binding
IHLE - It wildcard III # class bind FEEL At extend knees key word

Immutable :

- 'T 'JyEtpf wildcard Gaf generic class 722 immutable Gf

* Away Lists ? > [I is the only possible type that allows the creation

of an array of genetic classes

* The object class contains a method
. getdassc) that returns a

class at > object
murmur

* Type Introspection : Hocks of discovering class structure at ran time

C methods
, annotations ,

attributes
, inner classes

.
etc .) through a class LT >

object

* Reflection : what hagens when
you use this information are run - time

Array List Collection Type

* It's a genetic data structure
,

belongs to Java . util.2acko.ge

* Declaration : Away List Ltyae > List
. name = new Away List Lake > c I j

un

t

-Tobjectty#
size : Flik # EEZ - T Size

, 4352¥. 824*4 ,
IA A 2ft Away List

, BA size GzZEf¥⇒ ,

type :# declaration # TGS TIED
, '£Ttyze¥tLz#§

,
K¥27

* Add element :

my List
. add C4t6 . 78) ;

my ✓
FEZ

,
yf7zFay instantiate → Automatic Boxing

* get the size of the collection

my List
. sizes , → return - IT int

& get C index) → returns the element of toe T at the given index
The index positions are numbered from Zero

& setfositisn ,
now -

value) → changes the element at the given position

* add C position , new -
Value) → new value is inserted to the position

remove Go sit ion) → removes the element at the provided position

4 trim To size → remove unallocated aiosition

* done c) → KEE , -4 pointer

* to away c , → FE - THS Type -188 array-488455-45*3 Type TIS Away List LTD

It declare Away List sa Fatt Ee ELI :

A tray List 2 Type > List .
name = new Array List ff C ,

I
'Zaz Gf ,

'EH 't a 4th
diamond

,
this is an aspect

of ' '

type inference "
, just

like when java Sees the
' '

Type
' '

s it fills the blank

for you

& AwayList LT > BE mutable Git

& Regular List BE mutable txt§
String Is immutableThe

Inner Class
,

Anonymous Class
,

Abstract

Inner class
* A class defined within a class
Haj : * - SEE defined as private

* inner class Frt¥f¥# At outer

class fifth
'

Fo

* outer class Efta instantiate inner

class
, # EH # A inner class GF #

E

* ¥ah⑦af class .gr#fEf inner class af method GAVE : outeercdass . inner class
. method

Anonymous Class
fEkiE¥ - IT interface ,

¥FIIF - T abstract method CHF method header
, 22422¥

'

'

 the) , Afa , # til KI - T Anonymous Class / Lambda Function ¥t¥uEEk4# ET method
ummm

→ interface

+
yay

Anonymou class

HE
T

errrrrnnrrrrrrnrrrrrnr

I

Abstract class

* A class can also have concrete method definitions and
any kind of attribute

but it can only be extend .

TEJ : public abstract class My class . . .

Abstract method

* - THI header EEVKFHET.tt#EEfxG method
Had : public abstract int multiply Cinta , int b) ;

* IT # - T class ¥ abstract method ↳ fit , 'z¥¥i¥I¥ defined as abstract class

* - T extend 3 abstract class sat class * 54252492=-4 abstract class
,
-284 override #

¥ abstract class 488 abstract method

Interface
Constant attribute

abstract method
Interface"⇐ - T JUHI { Default meed

IF class ,
QUITE implemented

Lstatic method

* Interface ¥8954 He extend object
,

FBI extend interface

* Interface Itt 's'y¥ implemented ,Ftt implemented to 'T

Had :

* ya'RE # 4k$ implement taf interface 4¥ - tight method name , AHL , # implement's

affidavit h implement method

override abstract method

override / accept default method* ¥ - tdass implement 3-
'
T interface {

use static method

Poly moralism
* when a pointer of a parent class type ends up pointing to different
child class objects at runtime Also called "

dynamic binding ;

Java Module
* Module BREE eackage.LT#a-TtIskRfafEi8g name of module

* Each module has a module
- info

.
Java file { lack age available

9ackage required

module
- info

. java file format : # module name muse be unique

→ package available

Libraries

* A Library { *
.

class organized into package folder by { *
. Jar file

Cmodule desorption

Inheritance
Parent Class I super class

← o
child class child class → always more concrete

* child class FtkFIfEZL£* arent class sat public attribute and method

* t.biz#iffIfEgSTobjeceFhf*Jz,
object class Gf child class

* GET i 9ublic class child extend berent E - -
.

* Compiler will force you to invoke super in a child class '
Constructor ,

and it must be the first line in the constructor

* Belongs to Polymorphism

subclass safmeeh.ae {
'
¥¥£¥%F¥¥I!!!! tie parent class a fmeehod

override the method

Overload the method

Refine
, HI sub class 88 method & # invoke parent class Taf method

|¥¥,
HEELER .¥ZkBG EGG

* final : IEA # ¥4 class I¥¥E¥ extends
* - T class EEE extend

- IT class

Enumerated Type
enwm is a key word

, and is a type

Haj

* collection of Constant
→

* is immutable

* equals c , , ETHEL-58 A ==

A to String c I

* Compare To c)

* ordinal c) returns the numeric location of the value in enum List

* Value a , FE enum away -2¥ to - It ¥zE¥ away

* E

S

F-
array of this object

Be -
* Values c , : Icecream [] flavours = Icecream .

values as ;

Problem 3 soiecifically → - AEE .it#f4ItNTEtE5ktaf method

& ¥ - KEEFE Eat FITRI ;

* Variable Saf declaration EFE # BE THE variable faftyze ! ! !

& A k¥2 Public static return type name C) {
mu

I

Parameter TIBI -72224 # type ! ! !

* FREE .EE#HaftIBEEEFa , away ?E
-

'
'

EE . If A & &
EDIE -455ha't away : int E] away name = new int -4,7

size

ERE - TIKKA 2 - D away : inez] IT array name
-

- new int IT IT
I E

row size column
size

HIT # loop# away 3¥.

tp.EE#-.g
for teach can 't do this !

I - D array : for C i=o j is away . length g it # J

away E i] = ~

2 - D away : for Ci = o j it away . length ; it t)
for Cj = o ; j z away -L i] . length ; Itt)

away I i] [JJ = ~

A FEE ¥2§I¥I .EE#aGty3ecastingtxGI7&.eE
He KEF case EI that : int oval = Cine) 34.2

muumuu

HI 'I¥¥Efxf¥ . . :

Screen input using the scanner class :

① FEEL'¥÷i¥ import JET class : import Jara .

neil
. Scanner ;

EEE
. import Statement TEETH class definition IFI Gaf

② instantiate - TEASING scanner class object
Scanner screen = new Scanner CSystem .

in) j
7¥ .SI#I-vtfFEEzerinetiutIEa9zpIhaf :

System . out . 32inch C
' '

n
") ;

¥¥E# take user -4'¥sNxF¥¥

& wet Hum -

- screen . next Ine c , j → the integer
user Nam : screen . next Line c , ; → the Setting

& Integer Wrapper class : instantiate : Integer autumn
. Integer .

value Of C ~) ;

* String Class Saf method = 9g 35

* String token izeh : Fritter - It string Ekg Little pieces → 3g 35

£4174 Setting Tokenizen see = new String Token izer Casting) ;
while C St . has More Tokens c)) {

System .
out . print In Cst . next Token c , I j

}

→
immutable

& enwm : a Keyword
,

a type , IBIS - T collection of constant String .

dedlat : enum whatever { HARRY , BABY , HIDO }
me ¥i2¥F

If
'

Eat , whatever BE - It objects
Flit'£I¥ At : whatever anything = whatever . HARRY

AHH # Feet , anything .IE#ifE-tEsHi HARRY 3
¥ 3¥70 . 9g Go

tE¥ IE :

① generic class

② Atray List CT >

③ Early Binding I Late Binding
04 Java Ex

* Genetic method :

Method header : public static LT > return type method

name
cogs , {

}

& Abstract method : Public abstract returntyze

Method

name Largs , ;n

* Abstract class header : tunic abstract class class name E - - .

* Early Binding I Late Binding
- ¥H¥Egg Roly morphism → when a pointer of a parent class tyre ends up

pointing to different child class objects at runtime
.
C dynamic binding) ,

- Early Binding IEaGG%n when the parent class also owns the method

from the child class
"

argument
"

* Lambda Function : 7

HE Exam He) : Message Sender ms =
namely → method ESA ;

t.EE#Thzf
argument GA

Atf'T argument #tf : dis day some Cdb , gets → { method if 3) ;

Generic

lassthftk.4.FI#EEEI&hIF

inheritance class idffxf - KIZZEE .EfIE :

q¥z ftp.t#IEeEAzsaGEoJi , # at 'EEE4 #3k¥. dearly state '¥.tt#sIzAtT method , EH

EH provide safeage&E¥ztL¥

4 Method header IFI FE extend
, 32¥ s

, FIE ft method header'¥H#ytpthrow Expect ion , F FIGG constructor , mutation Bf header 4*847
throw Excel thou ,

32¥ s , FIT . FIGG throws new - . - . C
' '

- . -

'

y 4 ,
Braff

stat
.

* Access or txt return type # F-BE void

@ Override

& .equals → 2£47 - T boolean; takes in C object ~)

↳ instance of Taft# IF

&
. compare To → LEIF - T int ; takes in C current object r)

*
.
done c , {

{ :*:c:¥÷ii÷::÷en÷÷÷÷÷÷÷:
"

÷ . .

; ;
Catch C Exertion e , {

tetum null ; 3
return Lol 's }

*
.

-costing is → LELE - T String

¥13.335552 : Java Fx

* Event - Driven :L¥iEE¥# IGF event #ZEE .tt#EEgs,Even-nFrDFf4Efftt4

* To respond to an event - attach an Event Handler object to a component

* GUI construction 929 EKO i AWT C Abstract Window Toolkit)
t

Java x. Swing

¥k#EtIfiAE , # Hk , # JavaEx Fak ← f

Issuing ? JavaEx

÷÷÷÷÷÷÷:i÷÷:÷÷:*::c::*: .::::÷:: "

: "

swing does
.

40 Swing was developed mostly for enterprise / business use , not for personal use

and certainly not for mobile devices
.

*
.

Css file → Cascading Style sheet ,
"

skin " the scene using as style specification

for the window
. (Not have to have ie)

& lane object : a place to place your nodes

① Border lane :

CTol)

Layout 's SIT
#

⇒⇒ " →

¥"'µih
-

(Bottom)

Aside - Comment

* Anchor lane
- Component are anchored at a specified distance from the edge of the lane

using the sstatic methods :
r

, →
'
'

in aixels as a distance

from the

border of
the Lane ,

-
when changing size of the window , the node changes flexbily . BB

* Flow Zane
- files children into the cane in the order in which they are added from left
to right C by default) ,

if the available space is full , the children what around .

- when re - sizing the window
, if the available space is full , the children Wha }

around
.

* TBH Flow Tane .AE#Ei3iEE5I orientation .
VERTICAL that't ,

EGG children IG It KEY
IzEI¥GA

Bottom I Bottom T

Bottom 2 µ^Bottomb/wBottom 3 Bottom 7

Bottom 4 Bottom 8

Orientation
.

HORIZANTALG.fi#:BottomI-7Bot-Gm2y
J Bottom 3 -7 Bottom 4-
> Bottom J → Bottom b>Bottom7→Botom#

→ ¥¥4

& Grid lane →
" Hardest one

"

um

- You need to choose which position in the grid you 'll use for your component
- FEE# At E¥Ia¥¥L4I¥i¥Gf component # Ii Esat , Ex # sat '¥E¥E# ¥47455 F component

¥¥¥iaF
- Can add gaps between rows / columns using . seetlgac I 1. setvgacj ,

set gaps on the outside of the zane using asset Bedding c ,

- te - sizing → stable
, not changing component size , relatively position maintain

H Box and VBox lanes
* Fetty straight forward , no wrapping , # - ¥438273.2 Flow Tane ,

t.IE#LF
- HI 3 label / bottom GG Away Lise f ' Eli] Rile up Chorizo neatly / vertically)

HBOX :

Bottom I Bottom 2 Bottom }
→

µ ,

pawn ,

} No wt 9 around

Bottom 2

Bottom g

&

& Stack Knee C doesn't need this one)
- Tile controls C nodes) on top of each other like a deck of cards

* Tileane
- Another grid based layout ,

but simmer than Grid Bene
, more like

Flow Tane
.

- Controls are Laid down in the order in which they are added
.

abstract class -

.
2ublic abstract class name c , {

abstract method : public abstract return -type class name cargos

& Generic class isublicclass name at > {
Generic method :
fustic 2T extends - . . j . .

. & . . . > team type class name Largs) {

3

HAND IN
Answers Are
Recorded on

Question Paper

QUEEN'S UNIVERSITY
SCHOOL OF COMPUTING

CISC124, FALL TERM, 2017
FINAL EXAMINATION
9am to Noon, 8 DECEMBER 2017

Instructor: Alan McLeod

If the instructor is unavailable in the examination room and if doubt exists as to the interpretation
of any problem, the candidate is urged to submit with the answer paper a clear statement of any
assumptions made.

Proctors are unable to respond to queries about the interpretation of exam questions. Do your
best to answer exam questions as written.

Please write your answers in the boxes provided. Extra space is available on the last page of the
exam. The back of any page can be used for rough work. Please do not take the exam apart!
This exam is three hours long and refers exclusively to the use of the Java language. Comments
are not required in the code you write. For full marks, code must be efficient as well as correct.

This is a closed book exam. No computers or calculators are allowed.

Problem 1: / 30 Problem 4: / 50

Problem 2: / 10 Problem 5: / 10

Problem 3: / 20

 TOTAL: / 120

 This material is copyrighted and is for the sole use of students registered in CISC124 and writing this exam. This

material shall not be distributed or disseminated. Failure to abide by these conditions is a breach of copyright and may
also constitute a breach of academic integrity under the University Senate's Academic Integrity Policy Statement.

Student Number: 20060593

Student Number: ____________________ Page 2 of 22

Problem 1) [30 marks]

Mark each of the following as True or False using “T” or “F”:

____ Java was initially designed to be used to construct stand-alone applications.

____ Java is case-sensitive.

____ A Java byte code file is already in machine language ready to be executed by the

processor.

____ Variables declared inside a method are available to any other methods in the same class.

____ A variable declared outside a class is available to any class in the same package.

____ Only static methods can be declared outside a class definition.

____ Overloaded methods share the same name and parameter list, but differ by return type.

____ A for/each loop can be used to re-assign array elements.

____ Addition and subtraction have higher precedence than multiplication and division.

____ The operator, %, provides floor division.

____ { and } are used to control precedence in an expression.

____ String objects are immutable.

____ ArrayList<T> objects are immutable.

____ Primitive type values are passed by reference into methods.

____ An exception class must implement the Exception interface.

F ✓

T ✓

F ✓

T
u

T
✓

T
✓

I v

T
am

✓
F

r

E ✓

E ✓

T ✓
T

&
✓

T ✓

e ✓

Student Number: ____________________ Page 3 of 22

Problem 1, Cont.)

____ Every instance of a class will have its own copy of a static method.

____ Non-final attributes should be declared private.

____ A method declared as “final” is designed to be overridden.

____ Constructors cannot be overloaded.

____ The return type of a constructor is void.

____ A mutator should also return the value that is being assigned to an attribute.

____ Only constructors can throw exceptions.

____ A class header must contain a “throws” decoration if any of the methods in that class throw

exceptions.

____ An immutable class could have private mutators.

____ For an equals method to override the Object.equals() method it must accept a parameter

of type Object.

____ For the compareTo method to override the Object.compareTo() method it must accept a

parameter of type Object.

____ The standard toString method is a void method.

____ Private attributes and methods are also inherited from a parent class.

____ The extends keyword is used in a class header to implement multiple interfaces.

____ A class can extend more than one parent class.

E ✓
T ✓

E ✓

E ✓

T

mummer
=
,

✓
E ✓
t ✓
y

" ✓
T ✓
F

* ✓
T ✓
"

I ✓

T

e I

Student Number: ____________________ Page 4 of 22

Problem 1, Cont.)

____ Optimal hierarchy construction encourages attribute re-declaration.

____ Early binding is satisfied as a program is running.

____ Polymorphism means that a base class type can be used as a parameter type for child

class arguments.

____ If class Child extends class Parent then ArrayList<Parent> can be a parent class for

ArrayList<Child>.

____ A well-designed inheritance structure will be extensible.

____ Elements can be added to and removed from an Enumerated type after it has been

declared.

____ The type T in a class declared as GenericClass<T> can be instantiated inside the class.

____ Primitive types can be supplied as types to generic classes and methods.

____ A generic method can be invoked without supplying a type within < > because of type

inference.

____ A generic method can be invoked without using < > because of type inference.

____ A generic class can only be typed with a single type.

____ The use of a parameter of type Class<T> can be used to allow an instance of any Object

type to be supplied for the parameter.

____ An interface that uses the @FunctionalInterface annotation can have one or two abstract

methods only.

____ A functional interface supplies the method signature for a lambda function.

____ Any lambda function implementation can be replaced with an anonymous class

implementation.

I ✓

F
mmmm

✓
T ✓

F U

I ✓
T ✓
"
I ✓

T ✓

T
✓

T ✓

t ✓
T

T
E ✓

T u

a V

Student Number: ____________________ Page 5 of 22

Problem 1, Cont.)

____ A generic interface cannot also be a functional interface.

____ In Java versions 8 and 9 an interface can contain non-final attributes.

____ A lambda function can only be written for method signatures that have a single parameter.

____ All JavaFX GUI classes are taken from the javax.swing package.

____ A stylesheet, a *.css file, can be used to modify the appearance of just a single node in a

JavaFX window.

____ A stylesheet can also be used to attach events to nodes like buttons.

____ JavaFX contains node classes for charts like x-y plots.

____ The child nodes of a FlowPane container will always maintain their relative positions even

when the window using that pane is re-sized.

____ When using a GridPane, nodes can be added to any row, column position in the pane in

any order.

____ A child node in an AnchorPane can only be anchored to one side of the pane at a time.

____ The controller *.java class is identified in the Main.java class in a JavaFX application.

____ The @FXML annotation is used in the controller *.java class to identify attributes that have

fxid’s and need to be injected.

____ A font specified in the stylesheet file will override a font specified in the fxml file for the

same node in a JavaFX project.

____ Event listeners can only be added to nodes by using the fxml file.

____ A radio button must be part of a ToggleGroup object in order for only one button in that

group to be selected at a time.

32/60=0.53

T XF
E V

E ✓

E V

T_✓E
✓

T ✓
E ✓
T ✓
t ✓
T F
T

y
V

✓
T ✓

a ✓

Student Number: ____________________ Page 6 of 22

Problem 2) [10 marks]:
Answer the following in the space provided:

What is a “privacy leak”? Describe an example of when it would occur:

What is the process of “automatic boxing”? Provide a single example of its use:

Name two advantages of coding with inheritance:

Why should all non-final class attributes be declared as “private”?

Name two reasons why you would use JavaFX to build a GUI rather than swing:

When we use non-final class attributes, the attribute is accessible for other people to change it,
when we declared it as private, people who wants to change it gotta go through the mutator
designed by designers which prevent the possible illegal input

&
mum

Privacy leak happens when the contain that you don't want to

shows turns out shows u2 , sometimes it haken when a 2ornteL

zines to an Mirante array

when we need to use something in a Genetic class
,

we

don't need to instantiate it
, the class itself will help you

instantiate ie .

① better structure

Student Number: ____________________ Page 7 of 22

Problem 3) [20 marks]

a) In the box provided below write a static method called “factorial” that calculates and returns the
factorial of an integer value supplied as an argument. The factorial of a number, n, is shown in
mathematical format as “n!”. It is calculated using the cumulative product as:

𝑛! = 𝑛 ∗ (𝑛 − 1) ∗ (𝑛 − 2) ∗ … ∗ 2 ∗ 1

The easiest way to prevent numeric overflow of this calculation is to calculate and return the
value as a double. If the factorial method is supplied with an argument that is less than or equal
to 1, return 1.

-

run

man

Fistic static double factorial C int supplied) {

result
→ ¥53 , define # double

if csuezlied 70) {
for Ci -

- I ; is n ; itt) {
result = result # i }

return result

else

system .
out . Hindu C ' ' Not legal input 'j

}

Student Number: ____________________ Page 8 of 22

Problem 3, Cont.)

b) In the box provided below write a static method, to be included in the same class as the
method written for part a), called “combinations”. This method will be supplied with two integer
arguments which represent the size of a set of “things”, call it “all”, as well as the size of a sub-set
of “things” which could be called “some”. The number of possible combinations of “some” when
taken from “all” can be calculated using the formula:

𝑛𝑢𝑚𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 =
𝑎𝑙𝑙!

𝑠𝑜𝑚𝑒! (𝑎𝑙𝑙 − 𝑠𝑜𝑚𝑒)!

For example, there are six different combinations of two “things” when taken from a set of four
“things”. If the “things” are letters, you would have the set {A, B, C, D} for example. The possible
combinations of two letters would be: {A, B}, {A, C}, {A, D}, {B, C}, {B, D} and {C, D}. So, all is 4,
some is 2 and numCombinations would be 6.

As you can see, this formula involves the calculation of factorials, so your method should use the
method you wrote for part a). If either argument to combinations is less than 1 or if “some” is
greater than or equal to “all”, return 1. The combinations method should return a long type value.
Do not worry about upper limits for the argument values.

IIHF ;

Type Casting

Public static long combinations C int some , int all) {

if c some LI It all Ll) flong initial ;
double use ;Tetum IL

else if c some 7 all)

return IL

else {
use =

factorial Call) / factorial Come , # factorial Call
- sorry

initial = dong , use

return initial

}
✓

}

Student Number: ____________________ Page 9 of 22

Problem 3, Cont.)

c) In the box provided on the next page write a static method, to be included in the same class as
the methods written for parts a) and b), called “makeArray”. The integer argument supplied to
makeArray will be the desired number of rows in the 2D array of type long that will be generated
and returned by the method. The returned array will contain the possible combination results
calculated using the method from part b). The row number will be the “all” argument and the
column number will be the “some” argument. Since you cannot make a proper calculation of
combinations for all array positions, the array must be a “ragged” array, where the number of
columns in a row will equal the row index number plus one.

Here is an example that shows the contents and structure of the array that would be returned by
makeArray if it was supplied the argument 12:

Col: 0 1 2 3 4 5 6 7 8 9 10 11
Row 0: 1
Row 1: 1 1
Row 2: 1 2 1
Row 3: 1 3 3 1
Row 4: 1 4 6 4 1
Row 5: 1 5 10 10 5 1
Row 6: 1 6 15 20 15 6 1
Row 7: 1 7 21 35 35 21 7 1
Row 8: 1 8 28 56 70 56 28 8 1
Row 9: 1 9 36 84 126 126 84 36 9 1
Row 10: 1 10 45 120 210 252 210 120 45 10 1
Row 11: 1 11 55 165 330 462 462 330 165 55 11 1

Row and column numbers in the array have been added to the printout shown above for clarity –
they are not part of the contents of the array. For simplicity, it is assumed that there is one way to
obtain zero elements from any set, regardless of its size. A small box has been drawn around the
result used as an example in part b) for the 2 letters taken from a set of 4 letters.

If makeArray is supplied with an argument that is less than 1, it can just return null.

&

Student Number: ____________________ Page 10 of 22

Problem 3c, Cont.)

Public static long -4 I] make Away Cine size) {
if C size 21)

return null ;

long 'Ll E] the Away = new long [size] [size] ;

int tow , column ;

for C tow = o j row I the Away . length j row tt)

for C Column = o ; column 2- the Array -LLouD. length

j column et)

the Away I how] I column] = Combination C tow , column) ;

return the Away ✓

}

Student Number: ____________________ Page 11 of 22

Problem 4) [50 marks]
For this problem you need to write four classes, called “IllegalOil”, “Oil”, “CookingOil” and
“MotorOil”.

IllegalOil will be the exception class used by the other three. IllegalOil only needs the one
constructor that accepts a String type message.

Oil will be the base class for CookingOil and MotorOil. Here are the attributes that will be used in
the hierarchy:

- Density, a float, must lie between 0.8 and 1.0 g/cc (“grams per cubic cm.”) inclusive.
- Type, a String. It cannot be null or of zero length.
- Viscosity, a float, in Pa.s (“Pascal seconds”). For cooking oils this must lie between 0.01

and 0.1 inclusive. For motor oils this value must lie between 0.01 and 1.5 inclusive.
Cooking oils only store a single value for viscosity, which would be the viscosity at room
temperature. A motor oil will store viscosities in an array of float of any non-zero size,
where the viscosities have been measured between 0 and 100 deg. C.

- Saturated Fat Content, an int. Only for cooking oils. A percent value that must lie between
0 and 100 inclusive.

- Grade, a String. Only for motor oils. It would look like “10W30”. The number before the
“W” (the winter grade) must be 0, 5, 10, 15 or 20. The number after the “W” (the summer
grade) must be 8, 12, 16, 20, 30, 40 or 50.

All classes must be immutable. You may write any accessors that you need. Constructors must
throw the exception object if any attempt is made to create an object with illegal argument(s).

You must also write equals, compareTo and clone methods. Equality, for the equals method, is
defined as the Type string being the same, ignoring case. Comparison, for the compareTo
method, is based only on density. Each concrete class must also have a clone() method.

The demonstration code on the next page illustrates the polymorphic behavior of the hierarchy
and how constructors are invoked. When getViscosity() is invoked on a MotorOil object it returns
the average viscosity calculated from the array of values in the object.

You may find some or all of the following methods useful:

aString.charAt(pos1) //returns the char at position pos1 in aString.
aString.length() //returns the number of characters in aString.
aString.indexOf(searchString) //returns the location of searchString in

//aString, or -1 if it is not found.
aString.substring(pos1, pos2) //returns the sub-string from aString

//starting at location pos1 and going to
//location pos2-1.

Integer.parseInt(aString) //Attempts to convert aString to an int value,
//throwing a NumberFormatException if it cannot do
//so.

Character.isDigit(aChar) //Returns true if aChar is a digit.

mum

wmrmmmm_
mm mm

Student Number: ____________________ Page 12 of 22

Problem 4, Cont.)

Demonstration code:

import java.util.ArrayList;

public class TestOils {

 public static void main(String[] args) {
 // Density units are g/cc and viscosity values are in Pa.s
 // Fake array values, used for all motor oils:
 float[] testV = {1.1F, 0.98F, 0.75F, 0.63F, 0.31F, 0.27F, 0.11F};
 ArrayList<Oil> db = new ArrayList<>();
 // All argument values are legal:
 try {
 // density, type, viscosity, % saturated fats
 db.add(new CookingOil(0.911F, "Olive Oil", 0.034F, 14));
 db.add(new CookingOil(0.925F, "Coconut Oil", 0.080F, 92));
 db.add(new CookingOil(0.920F, "Peanut Oil", 0.04F, 18));
 // density, type, viscosities, grade
 db.add(new MotorOil(0.888F, "Multi-grade", testV, "10W30"));
 db.add(new MotorOil(0.891F, "Multi-grade", testV, "5W16"));

 } catch (IllegalOil io) {
 System.out.println(io.getMessage());
 }
 for (Oil element : db) {
 System.out.println(element);
 System.out.println("Viscosity = " + String.format("%.3f",
 element.getViscosity()) + " Pa.s\n");
 }
 } // end main

} // end TestOils
/* OUTPUT:
Cooking oil, type: Olive Oil, density: 0.911 g/cc, 14% saturated fat content.
Viscosity = 0.034 Pa.s

Cooking oil, type: Coconut Oil, density: 0.925 g/cc, 92% saturated fat content.
Viscosity = 0.080 Pa.s

Cooking oil, type: Peanut Oil, density: 0.92 g/cc, 18% saturated fat content.
Viscosity = 0.040 Pa.s

Motor oil, type: Multi-grade, density: 0.888 g/cc, grade: 10W30.
Viscosity = 0.593 Pa.s

Motor oil, type: Multi-grade, density: 0.891 g/cc, grade: 5W16.
Viscosity = 0.593 Pa.s

*/

Student Number: ____________________ Page 13 of 22

Problem 4, Cont.)

The exception class, IllegalOil:

q
extends

public class Illegal Oil extend Exception {

public Illegal Oil C String message , {

Suzette message)

}

}

Student Number: ____________________ Page 14 of 22

Problem 4, Cont.)

The base class, Oil:

→
FEAR !

public class Oil throw Illegal Oil X {
mmmm

private float density ;

privateString type ;

Public oil throw Illegal Oil C float den
, String tyg

,
{

set density C
den) ;

set tyre Hyp) ;

}

privatevoid see density C float ahem , throw Illegal Oil {if(Callum20.8) II Callum > to))
throws new Tittleguloil C

' ' Your input is not legal
'

Yg
else

this . density = a Num ,

}
Kirat void set type C String ask) throw Illegal Oil {

if (C att == null) it Castle - length = o))
throws new Tittleguloil C

' ' Your inane is not legal
'

Ygelse
this . tyre = astr ;

}

Student Number: ____________________ Page 15 of 22

Problem 4, Cont.)

The base class, Oil, continued:

HIT .in#4GfEJiEEEREhFh.FEiE3EEI
get vis say

①
→

accessing return type
EEF -7£ void

public void get Tyke , {
return this

. tgzej

O
'

9ublic void get Density c , {
return this . density ,

@ Override
3

public boolean equals C obj an Object) {
if CanObject instance Of Oil) {

if C an Object . get Type .
equals ignore case Cthis . tyze ,)

return true ;
else

return false , ✓
else

return false ; }
@ Override

Public int compare To Coil other Oil) {
int return Val ;

if (Math . abscotheroil . get Density - this .
Density) 20)

return 0 ;
else

return Kal = Cine) otherOil . get Density - this . Density ,

return return Val ;

} t.FI#KEFFEE..saf.&Es > return I

L return - I

} =
return 0

Student Number: ____________________ Page 16 of 22

Problem 4, Cont.)

The CookingOil class:

Public class Cooking Oil

eds
Oil

throttle#
private float Viscosity ;
private int fat ;

public cooking Oil C float den
, String eye , flout vis ,

super c den , typ , ;
int

fad
throw Illegal Oil {

set Vis Criss ;

set Eat C -

fab
}

private
void set Vis C float a Hum , throw Illegal Oil {
if (f allum 20-01 J 11 Callum> let ,)

throws new Illegal Oil C ' ' Not legal ;
else

y
this e Viscosity = a Num ;

Rival void see Eat C int a Num) throw Illegal Oil {

if KaNum 20) il Callum 2 too))
throws new Illegal Oil C " Not legal y

else
this . fat = a Ham

@ override

Public Cooking Oil clone C I {

Cooking Oil a New one =
null ;

new C density
,
the ,

viscosity ,
fat) ;

try {
anew one :

catch CEHegulgik.fi
'
null ;

} }

Student Number: ____________________ Page 17 of 22

Problem 4, Cont.)

The MotorOil class:

Public class Motor Oil

exd
Oil

tegaO§
private float] Viscosity Array ; ✓
privat String grade ; ✓

Public Motor Oil C float den
, String to , float E3 visa

, String gray

throw Illegal Oil {

sneer C den , tyg) ;

see vis Array c visit) ;

set Gradec grab

}
Private void see vis Array C floats an Away) throw IllegalOil {
If (an Array length = o)

throw new Illegal Oil C ' ' Not legal '

yj
for Ci -

- o ; if an Array . length ; it -1) {
if I Can Array Ei] 20.01) il C an Array Ei] 71.5))

throw new Illegal Oil C ' ' Not legal '

yj g
this . viscosity Array = an Array .

}

Student Number: ____________________ Page 18 of 22

Problem 4, Cont.)

The MotorOil class, continued:

 private void see Grade C String aster) throw Illegal Oil {

int Pos ;

String are , post ;

pos -
- astr

. index Of C ' '
v

. '

) ;
if Ceos= - I)

throw new Illegal Oil C " Not legal '

y j

pre -

- astr . Substninyco , poss ; ✓
post -

-
astr . Substring C 305 ,

astr . length) ;

if C ! pre . equal ignore case C ' '

o
"

I Ill C !

=
~

}
@ override

Lukic Motor Oil done c I {

Motor Oil anemone = hull ;

try {

anemone = new C density , the , Viscosity Away ,
grade) 's✓catch C Illegal Oil e)

return null ;
}

}

Student Number: ____________________ Page 19 of 22

Problem 5) [10 marks]

Here is a complete JavaFX program, starting below and ending on the next page:

package application;

import javafx.application.Application;
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.layout.AnchorPane;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;

public class Main extends Application {
 @Override
 public void start(Stage primaryStage) {
 try {
 AnchorPane root = new AnchorPane();
 HBox hPane = new HBox(10);
 VBox vPane = new VBox(10);
 Button button1 = new Button("Button 1");
 Button button2 = new Button("Button 2");
 Button button3 = new Button("Button 3");
 Button button4 = new Button("Button 4");
 Button button5 = new Button("Button 5");
 Label label1 = new Label("Label 1");
 Label label2 = new Label("Label 2");
 Label label3 = new Label("Label 3");
 Label label4 = new Label("Label 4");
 Label label5 = new Label("Label 5");
 hPane.getChildren().addAll(button4, label1, button1, button5);
 vPane.getChildren().addAll(label5, button2, label2, button3);
 AnchorPane.setTopAnchor(hPane, 10.0);
 AnchorPane.setRightAnchor(vPane, 10.0);
 AnchorPane.setBottomAnchor(label3, 10.0);
 AnchorPane.setLeftAnchor(label3, 10.0);
 AnchorPane.setBottomAnchor(label4, 10.0);
 AnchorPane.setRightAnchor(label4, 10.0);
 root.getChildren().addAll(hPane, vPane, label3, label4);
 Scene scene = new Scene(root, 600, 300);
 scene.getStylesheets().add(getClass().getResource("application.css").toExternalForm());
 primaryStage.setScene(scene);
 primaryStage.setTitle("Problem 5");
 primaryStage.show();
 } catch(Exception e) {
 e.printStackTrace();
 }
 } // end start

✓

✓ r v v

Student Number: ____________________ Page 20 of 22

public static void main(String[] args) {
 launch(args);
 } // end main

} // end Main.java

Problem 5, Cont.)

a) Using the empty window shown below, sketch the appearance of this window as it appears
when run. Draw a button as text inside a drawn rectangle and a label as just text. Don’t worry
about imitating fonts or even drawing straight lines. Concentrate on getting the relative positions
of buttons and labels and their associated text correct. Note that the pane objects used do not
display their borders. A ten pixel gap would be about 2mm on this drawing.

You are not given the contents of the stylesheet, but you don’t need to see this stuff – the
contents of this file will not affect the layout of the nodes and the text they contain.

Problem T

button 4 Label I button I button J Label T
-

~

button 2

Label 2
~

button 3

Label B

2ab→
I a

bottom
Light

Student Number: ____________________ Page 21 of 22

Problem 5, Cont.)

b) A Label owns a method called setText(String arg) that can be used to change the text
displayed in a Label to the String contained in arg. A Button owns a method called
setOnAction(EventHandler<ActionEvent> arg) that can be used to attach an event listener to a
Button. The functional interface EventHandler<ActionEvent> contains a single abstract method
called “handle” with the following signature:

void handle(ActionEvent event);

In the box below, write code that uses a lambda function to add an event listener to the button1
node that changes the text in all of the labels in the VBox and HBox panes to an empty String.

Write just the code that you would add to the code shown above. Do not repeat any of the code
shown above.

button I .
Set On Action C event → {

Label I . see Text C ' ' ' ' I ;

Label J .
see Text C

' ' " Jj

Label 2 .
See Text C

" " I

} I ;

Student Number: ____________________ Page 22 of 22

 (extra page)

HAND IN
Answers Are
Recorded on

Question Paper

QUEEN'S UNIVERSITY
SCHOOL OF COMPUTING

CISC124, FALL TERM, 2016
FINAL EXAMINATION
7pm to 10pm, 19 DECEMBER 2016

Instructor: Alan McLeod

If the instructor is unavailable in the examination room and if doubt exists as to the interpretation
of any problem, the candidate is urged to submit with the answer paper a clear statement of any
assumptions made.

Proctors are unable to respond to queries about the interpretation of exam questions. Do your
best to answer exam questions as written.

Please write your answers in the boxes provided. Extra space is available on the last page of the
exam. The back of any page can be used for rough work. Please do not take the exam apart!
This exam is three hours long and refers exclusively to the use of the Java language. Comments
are not required in the code you write. For full marks, code must be efficient as well as correct.

This is a closed book exam. No computers or calculators are allowed.

Problem 1: / 30 Problem 4: / 40

Problem 2: / 10 Problem 5: / 10

Problem 3: / 20 Problem 6: / 10

 TOTAL: / 120

 This material is copyrighted and is for the sole use of students registered in CISC124 and writing this exam. This

material shall not be distributed or disseminated. Failure to abide by these conditions is a breach of copyright and may
also constitute a breach of academic integrity under the University Senate's Academic Integrity Policy Statement.

Student Number:

Student Number: ____________________ Page 2 of 19

Problem 1) [30 marks]

Mark each of the following as True or False using “T” or “F”:

____ A “for each” loop can visit every element in an array.

____ Normal for loops cannot be used with ArrayList<T> collections.

____ A “chained if” construct uses a switch statement.

____ Java switch statements can be used to compare Strings for equality.

____ The Boolean comparators < and > can be used in the case statements inside a switch

statement construct.

____ A counter variable declared inside a for loop statement is scoped within the loop only.

____ Variables can be declared outside a class.

____ A static variable declared inside a method is known to all other methods in the same class.

____ A method declared as “final” cannot be overridden.

____ A class is declared “final” if it contains one or more abstract methods.

____ A static method declared in another class can be invoked without naming that other class.

____ The main method can invoke static methods in the same class directly without needing to

instantiate the class that it belongs to.

____ A method’s parameter list can contain default arguments.

____ A method that does not return anything, like main, does not need to state any return type.

____ A method declared “private” can be invoked in another class from an instance of the class

that owns that method.

T V

F V

F v

T v

F
-

v

T
-

✓

F v

Emm V

T V

E V

E
-

V
T

✓
E ✓

T V
E V

Student Number: ____________________ Page 3 of 19

Problem 1, Cont.)

____ An abstract method is declared using an empty set of { } (curly braces).

____ A child class that extends an abstract parent class must implement all inherited abstract

methods unless it is to be abstract itself.

____ An abstract class can only contain abstract methods.

____ Abstract methods cannot have a return type.

____ An abstract class cannot be instantiated.

____ An abstract class must have an empty, default constructor.

____ An interface can contain non-final attributes.

____ A class can implement more than one interface.

____ A child class can extend more than one parent class.

____ An interface can be used as a type when declaring variables.

____ A child class’ constructor must invoke the parent class’ constructor as the first line of code

in the child class’ constructor.

____ Constructors cannot be overloaded in the same class.

____ The return type of a constructor is “void”.

____ Polymorphism is also referred to as “dynamic binding”.

____ A class cannot extend another class and implement an interface at the same time.

T V

T
✓

T v

E v

T at

F ✓

F ✓

T v

f- V

T v

T
✓

T V
F & ✓

T V

f-
mum

✓

Student Number: ____________________ Page 4 of 19

Problem 1, Cont.)

____ In order to override the equals method inherited from Object, an equals method should

accept an Object as a parameter.

____ The compareTo method should return a Boolean true/false result.

____ The toString method in an object is automatically invoked whenever a String

representation of the object is required.

____ The clone method works properly when invoked from a pointer of type 2D array.

____ An immutable object contains public mutators for every private attribute.

____ An ArrayList<T> collection is a mutable object.

____ If Number is a parent class for Double, then ArrayList<Number> can be a parent class type

for objects of type ArrayList<Double>.

____ Collection<?> can be a base class for any object of type ArrayList<T>.

____ Generic methods must be contained in generic classes.

____ The use of syntax like “<T extends MyClass>” in the context of a generic method or class

ensures that objects of type T will have access to methods declared in MyClass.

____ The super keyword is used to supply a reference to the current object from inside an

instance of that object.

____ An ArrayList<Double> object can be supplied to a parameter of type ArrayList<? extends

Number> when invoking a generic method.

____ A generic class can be declared to use more than one generic type.

____ The Comparable<T> interface specifies the method header for the equals method.

____ A “Functional Interface” used with lambda functions can contain more than one abstract

method.

T ✓
F v

F XT

FrIT
mm ✓

T
mmmm

&

E ✓
T

mmEXTT ✓
T

x T
F

✓

T
mm

& ✓
T ✓
F &

q
✓

Student Number: ____________________ Page 5 of 19

Problem 1, Cont.)

____ JavaFX requires the use of a *.fxml file for component layout and sizing.

____ The stylesheet, or *.css file, can be used to attach an event listener to a JavaFX node.

____ An event listener must be added to a JavaFX node each time the user clicks on it.

____ A stylesheet, or *.css file, can be used to configure the appearance of all nodes of a

certain type or just a single node of that type.

____ A change listener will only respond when a user clicks on a component.

____ All event listener types will only respond to mouse actions such as button clicks.

____ The “@FXML” annotation is used in a controller file to identify pieces of Java code that will

need to be injected after the fxml file is processed.

____ Nodes can be created and named in the fxml file and those names are available in the

Java controller file, provided the fxml file knows the name of the controller file.

____ Fonts and font sizes can only be assigned in the fxml file.

____ An EventListener interface is a Functional Interface.

____ An EventListener can be implemented using a lambda function or an anonymous class.

____ A TextField node can be configured so that the user cannot change the text shown in the

node.

____ The Pane class does not contain a layout manager algorithm, but uses absolute sizing and

positioning instead.

____ The BorderPane class breaks a region into five parts.

____ Nodes in a FlowPane can change their relative positions if the pane’s size changes.

48/60=0.8

T XF

E ✓

F of

T ✓

FTx

E V

T ✓
T ✓
t ✓TE& x

T aTF &

T ✓ &

T & ✓

TE
*

Student Number: ____________________ Page 6 of 19

Problem 2) [10 marks]:
Answer the following in the space provided:

What is the process of “type inference” in the context of the use of generic methods and classes?

How would you bound a generic type when declaring a generic class or method?

What is the advantage of using a generic method over a method that is typed to use Objects
instead?

Name one advantage of using JavaFX over Swing for GUI construction.

What is the process of “early binding” and when does it happen?

Student Number: ____________________ Page 7 of 19

Problem 3) [20 marks]

a) Write a static method called “gcd” that accepts two int values as arguments and then returns
the number that is the greatest common divisor of the two supplied numbers. A divisor is a
number that divides another number without any remainder. The greatest common divisor or
“GCD” is the largest int value that divides two numbers evenly. For example, if the gcd method
was supplied with the values 10 and 25 it would return 5. If it was supplied with 43 and 100 it
would return 1. If it was supplied with 10 and 100 it would return 10. You can assume that the
method will only be supplied with integer values that are greater than zero.

2nd time without j

muumuu mm

wwmwwmmmmr

public static int god C int a Num , int bNum) {
int count , divisor 's

if Callum 2b Num)

Count = a Klum g

else 2 =

count = bklum →

for Ci -

- I ; i ④count ; it -1) {
if Callum To i = o & & bNum% i -

- o)

divisor = i g

return divisor ;

}

Student Number: ____________________ Page 8 of 19

Problem 3, Cont)

b) Write a static method called “gcdArray” that accepts two 1D arrays of type int as arguments. If
either array is empty (of zero size), null, or if they have different sizes, return null. Otherwise this
method will return an array of the greatest common divisors of the two numbers from each array
in the equivalent index positions. Use the gcd method you wrote for Part a). If either number in
the same index location is less than one, skip that index position. This means that the returned
array will be smaller than the supplied arrays if any of the values in either array is less than one.

For example, if the gcdArray method was supplied with the two arrays:

{4, -1, 10, 30, 27, 0, 100, 55}
{0, 10, 30, 6, 18, 20, 32, -2}

it would return the array:

{10, 6, 9, 4}

-

mum - my

rumrunner

Public static int E] god Away Cine E] a , int E] b , {
inec] divisor at hay = new ine [a . length] ;
int count =o ;

if C Ca. length = o) Il C b. length = o) Il Ca = null) Il Cb -

- null ,

if ! C a. length -
- b.length)

return null ;
for C i -

- o ; is a. length ; ite)

if @a E i] =o) Il Cb Ei] -

- o))
Continue ;

else

d&visor array [count] = gcdcatil , BE :3) ;
Count -1=1 ; }

return divisor away
}

Student Number: ____________________ Page 9 of 19

Problem 4) [40 marks]

For this problem you need to write four classes, called “Battery”, “SingleUse”, “Rechargeable” and
“BadBattery”. Both SingleUse and Rechargeable extend Battery. BadBattery is an exception
class used by the other three.

A SingleUse object is described by the following attributes:

x name – The name of the battery as a String, such as “Alkaline D”. The string cannot be
empty.

x voltage – The nominal operating voltage of the battery in volts as a double, which would be
1.5 V for the battery named above, for example. The voltage must be greater than zero
and less than 50.

x cost – The estimated cost of the battery in units of $ per kW-hr as a double. This value is
estimated to be $100 per kW-hr (“kilowatt hour”), for the Alkaline D battery, for example.
The value must lie between 1 and 30,000.

x capacity – The estimated battery capacity in units of AH or “Amp Hours” as a double. For
example a capacity of 10 AH means that a battery could deliver 10 amps for one hour or 1
amp for 10 hours before running dry. An Alkaline D battery has an estimated capacity of 8
AH, for example. The value must lie between 0.001 and 500.

A Rechargeable object is described by all of the above attributes plus:

x numCharges – An estimate of the number of possible charge cycles of the battery as an
int. For example, it is estimated that a NiCad rechargeable battery can be recharged 500
times. This value must lie between 2 and 10,000.

All attributes must be declared private. The base Battery class must contain only the name,
voltage and cost attributes which should not be re-declared in either of the child classes.

On the next page is some code in a main method in some other class that uses these four
classes, along with the output of this code. You can see that polymorphism is used to invoke the
toString and getLifetimeCost methods. The sample output shows the format of the String
returned by the toString method. The getLifetimeCost method estimates and returns the per use
cost of the battery over the entire lifetime of the battery. This is defined as:

cost * voltage * capacity / (1000 * numUses)

The “1000” is to convert Watt-hours to kWatt-hours. This is probably a pretty bogus definition, but
it is simple and this is the calculation that you must code into your implementations of the
getLifetimeCost method. Of course, numUses is one for a SingleUse object.

You can see that the base class Battery cannot implement the getLifetimeCost method, but it
must contain this method in some form in order for polymorphism to work. Write the exception
class first followed by Battery and then the other two. No other classes are required. Write the
just the minimum set of methods needed. All classes are to be immutable.

Student Number: ____________________ Page 10 of 19

Problem 4, Cont.)

Demonstration code:

import java.util.ArrayList;

public class TestBatteries {

 public static void main(String[] args) {

 ArrayList<Battery> bats = new ArrayList<>();

 try {
 bats.add(new SingleUse("Alkaline D", 1.5, 100, 8.0));
 bats.add(new SingleUse("Alkaline 9V", 9.0, 600, 0.4));
 bats.add(new SingleUse("Silver Oxide Button", 1.55, 18000, 0.15));
 bats.add(new Rechargeable("Lead Acid", 2.1, 100, 225, 500));
 bats.add(new Rechargeable("NiCad", 1.2, 1000, 1.0, 500));
 bats.add(new Rechargeable("LiPo", 3.2, 350, 2.2, 1000));
 } catch (BadBattery e) {
 // All battery data used above is legal.
 System.err.println("Should not get here...");
 }

 for (Battery bat : bats) {
 System.out.print(bat);
 System.out.printf(", cost per use: $%.3f\n",bat.getLifetimeCost());
 }

 } // end main

} // end TestBatteries
/* OUTPUT:
Alkaline D single use battery, cost per use: $1.200
Alkaline 9V single use battery, cost per use: $2.160
Silver Oxide Button single use battery, cost per use: $4.185
Lead Acid rechargeable battery, cost per use: $0.095
NiCad rechargeable battery, cost per use: $0.002
LiPo rechargeable battery, cost per use: $0.002
*/

Student Number: ____________________ Page 11 of 19

Problem 4, Cont.)

The exception class, BadBattery:

Public class Bad Battery extend Exception {

public Bad Battery C String message) {
Super c messages ;

}

}

Student Number: ____________________ Page 12 of 19

Problem 4, Cont.)

The base class, Battery:

 Table absence class Battery {

private String name ;
Private double voltage ;
Kira te double cost ;

public Battery C String nam ,
double vol

,
double cos) throw

Bagdtattey
if (Inam== null) it Cream . length = o))

throw new Bud Battery C ' ' Not legal ' y ,

this .
name = nam ;

if ((Vol 20) Il C Vol > Jo))
throw new Bad Buttery C' ' Not legal ' ') ;

this
.
voltage = rot ;

if (C cos 21) il Ceos > 30,000))
throw new Bad Buttery C' ' Not legal ' ') ;

this
.
cost -

-
cos ; }

Lukic String get Name c I {
return this

. name ;
g

Public double get Cost c I {
return this . costjg

public abstract double get Lifetime c , ;

}

Student Number: ____________________ Page 13 of 19

Problem 4, Cont.)

The SingleUse class:

public class Single Use extend Battery {

private double capacity ;

public SingleUse c String nam ,
double vol

,
double cos ,

double

cab throw
BadBattery

{
sweet (nam

, Vol
,
cos) ;

if ((Ca ? 20.001) 11 Cap > Too))
throw new Bud Battery C

' ' Not legal
' ' I ;

this
. cavity = cap ; }

Biblia double get Cavity c , {
return this

. Caza city ;

@ override
}

public double get Lifetime
Cost c , {

return (C this . get Coseyof Cthis . getVoltage) & this
.Cake

}

%o*T

}

Student Number: ____________________ Page 14 of 19

Problem 4, Cont.)

The Rechargeable class:

Student Number: ____________________ Page 15 of 19

Problem 5) [10 marks]

For this problem you will need to write a single generic method called “getLowCost” that would be
included in the TestBatteries class shown on page 10 in Problem 4.

The getLowCost method accepts two arguments – an ArrayList collection and a double value.
The ArrayList collection could be of type ArrayList<Battery>, ArrayList<SingleUse> or
ArrayList<Rechargeable>, where the Battery, SingleUse and Rechargeable classes are
described in Problem 4. The getLowCost method returns an ArrayList collection with the same
element type as the one supplied as an argument with just those battery objects whose per use
cost is less than or equal to the double value supplied to the method as the second argument.
The per use cost is the value returned by the getLifetimeCost method described in Problem 4.

The generic getLowCost method:

Public static < T extends Battery & Single Use & Rechargeable >

mum
Away List LT > get Low Cost C Away List LT > away I ,

double a) {

Algiers
return List = new Away Lists > c , ;

int
'

count -

- Oj

÷i:÷÷÷÷÷÷÷¥=
Couth t -

- I

} u

return return list ; y Away List ha

EEE
away List odd I

Student Number: ____________________ Page 16 of 19

Problem 6) [10 marks]

Here is a complete JavaFX program:

package application;

import javafx.application.Application;
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;

public class Main extends Application {
 @Override
 public void start(Stage primaryStage) {
 try {
 HBox root = new HBox(10); // A 10 pixel gap
 VBox box1 = new VBox(10);
 VBox box2 = new VBox(10);
 VBox box3 = new VBox(10);
 Button button1 = new Button("Button 1");
 Button button2 = new Button("Button 2");
 Button button3 = new Button("Button 3");
 Label label1 = new Label("Label 1");
 Label label2 = new Label("Label 2");
 Label label3 = new Label("Label 3");
 Label label4 = new Label("Label 4");
 box1.getChildren().addAll(label2, button1, label4);
 box2.getChildren().addAll(button2, label1, label3);
 box3.getChildren().add(button3);
 root.getChildren().addAll(box2, box3, box1);
 Scene scene = new Scene(root, 400, 140);
 // Sorry about the formatting for this line, but now it fits…
scene.getStylesheets().add(getClass().getResource("application.css").toExternalForm());
 primaryStage.setScene(scene);
 primaryStage.setTitle("Problem 6");
 primaryStage.show();
 } catch(Exception e) {
 e.printStackTrace();
 }
 } // end start method

 public static void main(String[] args) {
 launch(args);
 } // end main method

} // end Main class

Student Number: ____________________ Page 17 of 19

Problem 6, Cont.)

a) Using the empty window shown below, sketch the appearance of this window as it first
appears. Draw a button as text inside a drawn rectangle and a label as just text. Don’t worry
about imitating fonts or even drawing straight lines. Concentrate on getting the relative positions
of buttons and labels and their associated text correct. Note that the pane objects used do not
display their borders.

You are not given the contents of the stylesheet, but you don’t need to see this stuff – the
contents of this file will not affect the layout of the nodes and the text they contain.

b) A Label owns a method called setText(String arg) that can be used to change the text
displayed in a Label to the String contained in arg. A Button owns a method called
setOnAction(EventHandler<ActionEvent> arg) that can be used to attach an event listener to a
Button. The interface EventHandler<ActionEvent> contains a single abstract method called
“handle” with the following signature:

void handle(ActionEvent event);

In the box on the next page, write code that uses a lambda function to add an event listener to the
button3 node that changes the text in label1 to “Label One” and the text in label2 to “Label Two”
when the user clicks on button3.

Write just the code that you would add to the code shown on the previous page. Do not repeat
any of the code shown on the previous page.

c) Finally, draw an arrow in the previous page showing where you would add this code to the
provided code.

button 2 button } Label 2

Label I button I

Lab€Label 3

•

Student Number: ____________________ Page 18 of 19

Problem 6, Cont.)

The lambda function code needed to add the action listener to button3:

Student Number: ____________________ Page 19 of 19

 (extra page)

HAND IN
Answers Are
Recorded on

Question Paper

QUEEN'S UNIVERSITY
SCHOOL OF COMPUTING

CISC124, FALL TERM, 2015
FINAL EXAMINATION
7pm to 10pm, 15 DECEMBER 2015

Instructor: Alan McLeod

If the instructor is unavailable in the examination room and if doubt exists as to the interpretation
of any problem, the candidate is urged to submit with the answer paper a clear statement of any
assumptions made.

Proctors are unable to respond to queries about the interpretation of exam questions. Do your
best to answer exam questions as written.

Please write your answers in the boxes provided. Extra space is available on the last page of the
exam. The back of any page can be used for rough work. Please do not take the exam apart!
This exam is three hours long and refers exclusively to the use of the Java language. Comments
are not required in the code you write. For full marks, code must be efficient as well as correct.

This is a closed book exam. No computers or calculators are allowed.

Problem 1: / 30 Problem 5: / 10

Problem 2: / 20 Problem 6: / 30

Problem 3: / 10 Problem 7: / 10

Problem 4: / 10

 TOTAL: / 120

Student Number:

This material is copyrighted and is for the sole use of students registered in CISC124 and writing this exam. This
material shall not be distributed or disseminated. Failure to abide by these conditions is a breach of copyright and may

also constitute a breach of academic integrity under the University Senate's Academic Integrity Policy Statement.

Student Number: ____________________ Page 2 of 22

Problem 1) [30 marks]

Mark each of the following as True or False using “T” or “F”:

____ Compilation of Java source code produces an intermediate byte code file which is then

processed to produce an executable file.

____ Every IDE uses its own unique Java compiler.

____ Methods can only be declared within classes.

____ Attributes can be declared outside classes.

____ Static methods can be invoked without instantiating the class that owns them.

____ Every class must be declared to contain at least one attribute.

____ Switch statements can work with Strings as well as integer and floating point types.

____ A Java class can only extend one class.

____ Every class in Java is a sub-class of the Object class.

____ An interface can only contain abstract methods and final static attributes.

____ Both public and private methods are inherited by a child class from a parent class as long

as it is in the same package as the parent class.

____ A class with a parameterized constructor will no longer have a generated default

constructor.

____ Only constructors can throw exceptions.

____ A class that contains constructors that throw exceptions must have a throws decoration in

the class declaration line.

____ An abstract class can contain normal attributes and only abstract methods.

-7 → 03/60=0-88

=

T F
T v

T
✓

I ✓

T v

T
✓

I v

T v

T v

t
' Ii

T ✓
E T

T u

T ✓

E ✓

Student Number: ____________________ Page 3 of 22

Problem 1, Cont.)

____ A child class can implement many interfaces.

____ A sub-class that extends an abstract class must have a non-abstract implementation of

every abstract method in the super-class, unless the sub-class is abstract as well.

____ The first line of code in a child class’ constructor must be a call to the parent class’

constructor.

____ Abstract classes can be instantiated.

____ Interfaces cannot be instantiated.

____ A variable can be declared to be of an interface type.

____ A variable of an abstract class type can be assigned to point to an object of a concrete

child class type that extends the abstract class.

____ A variable of type Object can point to any object in Java.

____ Early binding is satisfied at the time of compilation.

____ Late binding is the process that provides polymorphism at run time.

____ Non-final attributes should always be declared private.

____ A mutator returns the value of the attribute it is changing.

____ A standard clone() method throws an exception if a valid clone object cannot be created.

____ For the equals() method to override the equals method inherited from the Object class it

must accept a single Object type argument.

____ A standard compareTo() method returns a boolean value.

T ✓
T ✓
T ✓
E ✓

F T
T V

T ✓

T ✓
T ✓
T ✓
T ✓
T ✓

e v
T

⇐ I

Student Number: ____________________ Page 4 of 22

Problem 1, Cont.)

____ An overridden method refines the method it is overriding by invoking it.

____ A child class can overload a method inherited from a parent class provided the name of

the method is the same, the return type is the same and the parameter list is the same.

____ Classes cannot contain both static and non-static methods declared in the same scope.

____ A static method cannot use non-static attributes.

____ An ArrayList<T> object holds objects of type T.

____ A generic class is also known as a “parameterized class”.

____ Array types can be provided as types to generic classes.

____ An interface type can be provided as a type to generic classes and methods.

____ The “< >” in a generic type can hold more than one type.

____ Generic methods can enforce type safety where methods that accept and return Objects

cannot.

____ Type inference can be used with generic classes and methods.

____ GUI programs can only respond to mouse events such as mouse button clicks and cursor

movements.

____ An EventHandler object must be attached to a JavaFX component in order for it to respond

to an event.

____ “AWT” stands for “Awful Windows Tookit”.

____ The Swing GUI toolkit has been replaced by JavaFX.

T ✓

E ✓

E ✓
t T

T ✓
T V

T ✓

T ✓

T ✓

& T
&

T ✓

E ✓
T

✓
E

✓

I V

Student Number: ____________________ Page 5 of 22

Problem 1, Cont.)

____ JavaFX contains a control that can act as a web browser.

____ A JavaFX project can use separate stylesheet and fxml files along with normal Java

source code files.

____ Stylesheets, or *.css files, are used to create and position nodes belonging to a Scene

Graph.

____ Fxml files are stored in binary format.

____ A single setting in a stylesheet can be used to alter the look of all controls belonging to a

Scene Graph.

____ A stylesheet can be used to alter the look of just one control at a time.

____ An fxml file is designed to inject nodes into a *.java controller file when it is being

instantiated.

____ The use of nodes in an *.java controller class is indicated with the “@FXML” annotation.

____ The controller class associated with an fxml file must instantiate the nodes used by a

particular scene object.

____ A scene object must be added to the stage object supplied to the overridden start method

as an argument in a JavaFX application.

____ The root object of a scene object is usually an instance of a class that extends the Pane

class.

____ The BorderPane object breaks up a region into five areas that can be used to contain

nodes.

____ A FlowPane object maintains the relative positions of its nodes independent of the size of

the pane.

____ JavaFX does not support animation.

____ JavaFX does support drawing with 3D objects.

T ✓

T ✓

T ✓
E V

T ✓
T ✓

T V

T V

T ✓
T T
T ✓

T ✓

"

I ✓
T

✓
a ✓

Student Number: ____________________ Page 6 of 22

Problem 2) [20 marks]:
Answer the following questions as briefly as possible:

Can you store an int value in an ArrayList<T> object and if so, how would you do it?

What is the purpose of implementing the Comparable<T> interface?

What is the reason for making non-final attributes private?

What is the advantage to declaring class members static?

What is one advantage of using polymorphism?

Student Number: ____________________ Page 7 of 22

Problem 2, Cont.)

What does it mean to say that an “exception is propagated”?

Name one advantage of using inheritance.

Why is a try-with-resources block better than a normal try-catch block when used with File I/O?

Which file format – binary or text – produces the most compact file for storing numeric data and
why?

What is a Scene Graph as used in JavaFX?

Student Number: ____________________ Page 8 of 22

Problem 3) [10 marks]

Provide the console window output of each of the following println statements. If you think the
statement will cause an error, write “error” instead.

System.out.println (15 / 2.0);

System.out.println ((double)(7 / 2));

System.out.println (6 * (2 / 3) + 7);

System.out.println (true && 1);

System.out.println (6 * 2 / 3.0 + 7);

System.out.println (6 * 20 / (3 + 7));

System.out.println (5 > 2 || 3 <= 1);

System.out.println (2 ** 3);

System.out.println (26 % 3);

System.out.println (4 + 6 * 2 - 7 + 10 / 5 - 1);

System.out.println (true && 9 != 7);

System.out.println ("4" + 3 + 1);

System.out.println (2 + 1 + "7" - 4);

System.out.println (5 > 2 && 6 != 5 || 7 < 3);

System.out.println (6 + 7 <> 13);

System.out.println (2.4 / (int) 1.2);

System.out.println ((int) (9.6 / 2.0));

System.out.println (7 + 2 > 3 && 9 >= 2 + 2 + 2);

System.out.println (Character.isDigit("123"));

System.out.println (Character.toLowerCase('B'));

Student Number: ____________________ Page 9 of 22

Problem 4) [10 marks]
Write the output of the following complete program, which runs without error, in the box provided:

public class Problem1 {

public static double fiddle(int num1, int[] nums1, int[] nums2, String str) {
 str = str.toLowerCase();
 int size = str.length();
 String flipped = str.charAt(size ‐ 1) + str.substring(1, size ‐ 1) +
 str.charAt(0);
 System.out.println(flipped);
 num1 = size;
 for (int num : nums1)
 num *= 10;
 System.out.println(nums1[0]);
 double sum = 0;
 for (int i = 0; i < nums2.length; i++) {
 sum += nums2[i];
 nums2[i] *= 10;
 }
 System.out.println(nums2[0]);
 return sum;
}

// Displays numbers on one line
public static void showArray(int[] array) {
 System.out.print("Array: ");
 for (int num : array)
 System.out.print(num + ", ");
 System.out.println();
}

public static void main(String[] args) {
 int[] array1 = {2, 3, 4, 5};
 int[] array2 = {1, 2, 3, 4};
 String aString = "Hello Class!";
 int aNum = 20;
 double aVal = fiddle(aNum, array1, array2, aString);
 System.out.println(aNum);
 showArray(array1);
 showArray(array2);
 System.out.println(aString);
 System.out.println(aVal);
}

}

Student Number: ____________________ Page 10 of 22

Problem 5) [10 marks]

Here are a bunch of classes and an interface from the same Java project:

public abstract class Base {

 public int sum(int a, int b) {
 return a + b;
 }

 public int multiply(int a, int b) {
 return a * b;
 }

 public abstract int subtract(int a, int b);

} // end Base

interface Dividing {

 int divide(int a, int b) throws DivideByZero;

} // end Dividing

public class DivideByZero extends Exception {

 public DivideByZero(String message) {
 super(message);
 }

} // end DivideByZero

public class Concrete extends Missing {

 public int multiply(int a, int b, int c) {
 return a * b * c;
 }

} // end Concrete

There are two more classes in this project. The one on the next page contains a main method
that tests the other classes:

Student Number: ____________________ Page 11 of 22

Problem 5, Cont.)

public class Demonstration {

 public static int remainder(int a, int b) {
 return a % b;
 }

 public static void main(String[] args) {

 Concrete test = new Concrete(); // Prints:
 System.out.println(test.sum(4, 5)); // 9
 System.out.println(test.sum(4, 5, 6)); // 15
 System.out.println(remainder(12, 5)); // 2
 System.out.println(test.multiply(4, 5)); // 20
 System.out.println(test.multiply(3, 4, 5)); // 60
 System.out.println(test.subtract(4, 5)); // ‐1

 try {
 System.out.println(test.divide(10, 0));

} catch (DivideByZero e) {
 System.out.println(e.getMessage()); //Attempt to divide by 0!
 }
 try {
 System.out.println(test.divide(10, 2)); // 5
 } catch (DivideByZero e) {
 System.out.println(e.getMessage());
 }
 try {
 Dividing dTest = new Missing();
 System.out.println(dTest.divide(15, 2)); // 7
 } catch (DivideByZero e) {
 System.out.println(e.getMessage());
 }

 } // end main

} // end Demonstration

As you can see the listing shown above contains the output of the program when run as in-line
comments. One class is Missing. The Missing class extends one class and implements an
interface. Write the Missing class on the next page:

Student Number: ____________________ Page 12 of 22

Problem 5, Cont.)

Student Number: ____________________ Page 13 of 22

Problem 6) [30 marks]
For this problem you will need to write two classes, the first is an exception class called
“ItemException” and the second an encapsulated class called “ItemRecord” that will use the
ItemException class.

The exception class only needs the one constructor that takes a String type message.

The ItemRecord class is designed to hold an inventory count for a single item from a store. It has
three attributes:

x A String type store code which must be at least five characters in length.
x A String type SKU code which must be exactly 10 characters in length and must consist of

a combination of numeric digits (0 to 9, inclusive) and a single hyphen, -, at index position 5
in the String. For example, the SKU codes "45307-1239" and "02357-0012" would be legal,
but the codes "89abc-3451", "89-1234567" and "023537-0012" would not be legal.

x An int count for the inventory of this item. The count must be greater than or equal to zero.

The ItemRecord class has a single constructor and is immutable. It has an accessor for each
attribute. It also needs the standard equals(), compareTo() and toString() methods, but does not
need a clone() method since it is immutable.

Equality of two ItemRecord objects is defined as both objects having the exact same store code
and sku code. The two objects can have different item counts and still be equal. You must
override the equals() method inherited from the Object class.

For sorting purposes, when the compareTo() method will be used, ItemRecord objects are
compared on an alphabetical basis using the store code first, followed by the SKU code, also on
an alphabetical basis. A negative return from compareTo() means the supplied ItemRecord
object comes later in the alphabet that the current ItemRecord object.

Finally, the String returned by the toString() method would look like the following examples:

Store: KIN002, item: 45307‐1239, count: 10
Store: LON001, item: 02357‐0012, count: 20

No other public methods are required. Comments are not required. No other classes are
required. A main method is not required.

Write the exception class first on the following page, then write the ItemRecord class starting on
the middle of the next page and following onto the next three pages, as needed. If you run out of
room you can continue the class on the last empty page of the exam.

The Character wrapper class owns the static method .isDigit() that returns true if the supplied
char is a digit. The String class owns the methods .length(), .charAt() (supplies the char at the
given index position) and .equals().

Please don’t separate the pages of this exam or if you must, then put them back in the same
order!

Student Number: ____________________ Page 14 of 22

Problem 6, Cont.) The ItemException Class:

The ItemRecord class:

Student Number: ____________________ Page 15 of 22

Problem 6, Cont.)

Student Number: ____________________ Page 16 of 22

Problem 6, Cont.)

Student Number: ____________________ Page 17 of 22

Problem 6, Cont.)

Student Number: ____________________ Page 18 of 22

Problem 7) [10 marks] Do part A or part B, but not both.

Part A) The following code is the xml language contents of an fxml file attached to a JavaFX
project:

<?xml version="1.0" encoding="UTF‐8"?>

<?import javafx.scene.control.*?>
<?import java.lang.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.layout.VBox?>

<VBox prefHeight="234.0" prefWidth="407.0" spacing="10.0"
stylesheets="@application.css" xmlns="http://javafx.com/javafx/8.0.40"
xmlns:fx="http://javafx.com/fxml/1">
 <children>
 <Label prefHeight="23.0" prefWidth="327.0" text="Four calling hens!" />
 <HBox prefHeight="100.0" prefWidth="299.0" spacing="10.0">
 <children>
 <Button fx:id="btn1" mnemonicParsing="false" text="Three" />
 <Button fx:id="btn3" mnemonicParsing="false" text="French" />
 <Button fx:id="btn2" mnemonicParsing="false" text="Birds!" />
 </children>
 </HBox>
 <HBox prefHeight="100.0" prefWidth="200.0" spacing="20.0">
 <children>
 <Label text="Two" />
 <Button fx:id="btn5" mnemonicParsing="false" text="Partridge" />
 <Label text="Doves!" />
 </children>
 </HBox>
 <HBox prefHeight="100.0" prefWidth="200.0">
 <children>
 <Label text="And a Turtle in a " />
 <Button fx:id="btn4" mnemonicParsing="false" text="Pine Tree!" />
 </children>
 </HBox>
 </children>
</VBox>

Sketch the window on the next page.

Do not worry about absolute pixel sizes, the shape of the letters or drawing straight lines, just try
to get the relative positions of the components correct.

Draw a label as just text and a button as text inside a rectangular outline. Don’t worry about
colours or shading.

Student Number: ____________________ Page 19 of 22

Part A, Cont.)

Student Number: ____________________ Page 20 of 22

Part B) Here is the content of the Main.java file from a different JavaFX project than the one
used in Part A:

package application;

import javafx.application.Application;
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.layout.GridPane;

public class Main extends Application {
 @Override
 public void start(Stage primaryStage) {
 try {
 GridPane root = new GridPane();
 Button button1 = new Button("And a Partridge");
 Button button2 = new Button("Tree");
 Button button3 = new Button("Turtle Doves");
 Button button4 = new Button("Three");
 Button button5 = new Button("Hens");
 Label label1 = new Label("Four Calling");
 Label label2 = new Label("Two");
 Label label3 = new Label("in a Pine Tree");
 Label label4 = new Label("French");
 Label label5 = new Label("in a");
 // col, row

root.add(label2, 0, 0);
 root.add(button3, 1, 0);
 root.add(label3, 2, 0);
 root.add(label1, 0, 1);
 root.add(button5, 1, 1);
 root.add(button1, 0, 2);
 root.add(label5, 1, 2);
 root.add(label4, 2, 2);
 root.add(button2, 3, 2);
 Scene scene = new Scene(root, 760, 260);
 scene.getStylesheets().add(getClass().getResource("application.css").toEx
ternalForm());
 primaryStage.setScene(scene);
 primaryStage.setTitle("Another Mixed Up Song");
 primaryStage.show();
 } catch(Exception e) {
 e.printStackTrace();
 }
 }

Student Number: ____________________ Page 21 of 22

Part B, Cont.)

 public static void main(String[] args) {
 launch(args);
 }
} // end Main class

Sketch the window below.

Do not worry about absolute pixel sizes, the shape of the letters or drawing straight lines, just try
to get the relative positions of the components correct.

Draw a label as just text and a button as text inside a rectangular outline. Don’t worry about
colours or shading.

Student Number: ____________________ Page 22 of 22

Extra Page

