
Attributes of Algorithm : correctness , Efficiency
-

Correctness : For any given input , it halts with the correct output .

↳ ht. ''¥ Algorithm A Algorithm B ⇒ ¥hHaE# 3177152

Ease of understanding ← E.1.LEFF ?!{EIIfainieencycseaceandeim.FI
Order of an Algorithm :

Insertion sort : sequence of n numbers → ieHion## → Sorted sequence

* 2k¥52 'Telement #HE sort
TEETH f¥ ET element , Effy -T 1003 , Ee'L¥aFfE'T element If sorted away
2.tt#.fafEelemene-fEX - TEC KEG element 'z¥y

Pseudo code

→ afI.HR#eEFGIxGAin3utsizeI-Fq
The input size C away size n for sorting,

* Analyze insertion -sort : Afi# depends on {mm-

µ How sorted the input array is

Running time : The running time of an algorithm on a

particular insert is the number of primitive operations or
"

step " executed E.¥47531 't step

HE Beadecode IIE : ith KE # at Ci

na notation {
=

de't FILE number of times while loop is executed

cost f¥IF¥e'ERIE- IEEE#Ef Ef
#Fkf ,

Tcu) H'¥E.GG running time

cost times
.
- - - -

, zET8¥E¥±Ci ,
N

(
I

C. 2
, n - I ,

condition GELL
-
-
- - -

-
- C , te Cathy-21

(4 n - I
- J

- h s -

-

Cj Z j=2 Fj l

- IC. 6 2¥ Gt; - D
,

CT III , Ets -
-

H
C8 n - 1

Tch) = Can t Czech - i) t Cy Cn - l) t G- (Z she t;) t Coo Is # - l)) t Cy (I Ct; - d)) -16cm)
-

Best case EGLE .IE#eineut3afakay&e3eE'¥4789 :

1,2 . 3 , 44

''''
'"

II;¥
"IEEE:c: ::-c't .IE#itea.-iunaion

Worst case : ¥¥ItiE.tt#f7EkG9-,EEHhI5HF4Gafloo3Et'I¥afE¥E¥±2¥yE¥'T sorted away
tg=j

It KJ : t; -- j : Ijf e; = 2-jshj = nine - I / I Cj - I , = hcs
= 2+374 TT -

- - - t n

= 2-13+4 t - - - - t n-2 t n- l t n

= 2T Cn - l) t 3T Cn -L) t - . . .
. t Cn tl) - I

ncney
= In x Cnt 1) = - - M

2

Tcn) =

⇒ quadratic function

#the -¥2s¥Ef worst case analysis : I'¥if¥3 -T upper bound for any given input

Order of growth :
' etat running time , FEETELEA , Ib¥fEGfBfi⇒Ft¥¥, .IE#absttactGg "

cost "XFE¥Ez
↳ I . K¥547. leading term , CE e t) m2 for insertion sort

2 . I *zEg£bE&Ldto3f¥ → m2 → O Cny '

- worst case running time

-0 - notation
→
IKE sat Tch)

D- Cgcn)) = {far) : there exist positive costumes Ci , Ca , and no such that
- -

OKC, gcn) E fan) I csgcn, for all n z no }↳ g¥n, grows at ta rate the same as gcn)

*

*

Tcn)

* ocgcns, iz I '¥
-T set ,

fans Kang - I

ocgcni)
r cgcn ,)
F

f - notation
→
IKE 5- Tch) I

D- Cgcn)) = {far) : there exist positive costumes Cc , Ca , and no such that
- -

OKC, gcn) E fan) I • gcn , for all n z no }↳ ¥n, grows at ta rate the same as gcn)

↳ Cgn) → usher bound
ATV. gcnsf;¥f¥ 3 -T tight bound

A far)

/ cc gcn) → lower boundE
-

fetters 12h' - 3h ⇒ C , n
2 I z

'

n
'
- 3h I Can 2

Cl I z
'
- In E Cz

O - notation
→
III sat Tcn)

O Cgcn)) = {far) : there exist positive costumes C and no such that
-

-

O E fan) E C gcn , for all n z no }

A ⇒ ¥¥f¥s -4 upset bound

yr
cgcnj

⇒ if O- notation bounds the worst case running1-""
"

ii. t.ie:b: Yes
..

"

::
-

S-notation
→
IKE sat Tcn)

r Cgcn)) = {far) : there exist positive costumes C and no such that
-

-

ok cg I f-Cn) for all n z no }

a

YT ⇒ "" """ """d

- gay

-

iE¥ztE :

f- Cgcn)) requires that every member f-Ch) E ① Cgcni) be asymptotically nonnegative
hmmmm

* asymptotically nonnegative : fan) 70 whenever n is sufficiently large
hmmmm

* In general , for any polynomial Tcn) i -od ai ni where the ai are constant and ad 70

we have gcn) = -0 end)
* Note O Cgcni) implies ocgcn,

→ -0 Cgcns) E 0cg Cns,
-

n'tI
Eat# FEE

V

* The Ochs bound on the worst - case running time of insertion sort
,
however doesn't imply

a D- Cn 'T hound on the running time of insertion sore on every input .

I ¥'d -0 Cgcns, Az -T tight bound , Ex insertion sort #I¥e¥3X¥ap¥¥ D- Cng bound ¥8

* when we say that the running time of an algorithm is regard

µ
No matter what particular input of size n is chosen for each value of n , the value is at least

a constant times gcn)
④

lower bound for even best case scenario

Asymptotic notation in equations and inequalities
→①Frt¥fEfE asymptotic notation At ¥ Ift -4

2nF 3.n + I = 2h ' t Q Ch)
-

t{ fun, which in OCD€
eliminate inessential detail and clutter in an equation

② 2n't D- Ca) = -0 CND

No matter how the anonymous functions are chosen on the left of the equal sign,(theorem? Ife toeguhaI.s.entheaiadnonym.us functions on the rione of the equal sign

>
2n2t -0 Cn) = -0 Ch')

for any function fan) E D- Cn) ,
there is some function gcn) E ⑦ Cn 's

such that 2h 't fan) = gcn,

425¥ FIFE Q , ②4¥ -ILE : 2n2t3n + I =
2kt ⑦ Ch) = -042,

Theorem : Icn) = -0 Cycas) if and only if fans = ocgcns) and fan,=rcgcny
→

7.EZER't Ocn) '¥e worst case
, scns.EE best case 'Ihi4t3

→ best case

-

→
worst case

}

)-r

-

O L
O

-

O ocgcn)) t r Cycad
O

⑦ Cfcngt gens) ⇒ there exist constant c.
,
co

,
no such that

of C, Cfcn) t gens) E Tcu) I Ca Cfcnttgcnsj

maxcfcns , gens) Ci E E G

I → * a e Is

far) > Gcn)

if maxton , , gcn)) = Icn) :

3. I - l : ==

I n , , nz : tch)Z O
,
for n > n ,

gcn) Z O for n ? he

let no = Max Chi
, nay , for n > no :

fcn) 2 Max Cfcn)
, gens)

gcn) Imax Cfcns , gens)
fcn) t gcn) I 2. max Cfcn) , gens)

(fan) tgcn)) xz' z Max Cfcn) , gcnD
Max Cfcns , gens, I fcn) t gcn)

µ
Max Cefn) , gcn# fast gcn, I z

'
Max Cfcnssgcni)

④
z' Cfcnstgcn)) Imax cfcns , you)) I fcnstgcnj

④
C, = I , Cz =/

Complexity of Recursive Algorithm

Recursive Algorithm 2k¥44't divide and conquer algorithm
unmown

↳ divide , conquer , combine ⇒ Merge Sore !

Merge sore : Divide the n- element sequence to be sorted into two sequences of In elements
each

, sort the two subsequences recursively using merge sort , then merge
the two sorted

arrays .↳
¥za¥Ee¥Gff¥tE¥ Merge CA , 3,9 , r) ⇒ A '¥n -T array

AE? -
- - 9]¥e - T sorted away

A Eau, LIFE 'S-T sorted away
µ return

sorted Away Ace - t)

} oars → 21124¥53. Aia.tt/EEkahiiHE

} ocn) /

z } Sentinel value , so that
⇒ Mette tht tanning time Tcu) E Ocn,

whenever a card with y isexeosed.IE?'E-T-tEE.IEz3iEGfFHE - T-THEE, min @Ei] , RE 's])T E

LE T J RE]

} och)
⇒

A E
V

]

Merge Great Pseudo code

Analyzing divide and conquer algorithm
* 'Eff recursive call GG algorithm GG tanning time 'z¥Ff#

Le Currence equation or recurrence = tanning time
on a problem of size u

to

L 7

t
base case

* Suppose that the division of the problem yields ⑥ sub problems ,
each of

is ⑤ the size of original CIE takes time to solve one

subproblem of size Ib) ,
D Ch) time to divide the problem into sub problems

,

Ccn) to combine the solutions to the sub problems
.

Tcn) = { ⑦
C" if nd c

,

a TCF) t Dcn) t Cch) otherwise

⑦ Ci) if n -- I

HF Merge sort #I% Tch) = { zqczh , + p + ① on, =2TCzh) tech) if u > l
-

K

2'T subproblem's
un

t

'
Et 'T subproblem 4*2,4=-5 size

Easier Example :

Acn) : if n > =L : C ,

print n CZ

Acn - y
Gcn

-y })
Tch) = { C ' for n =o

Cs t Tch - t) fon n z I
<

we

⇒Yt¥atE¥ "¥Eay"IF mine n

How to transform the recurrence relation into a closed - form formula ?

← a

substitution Expansion

substitution

Tco) = Ci T
Tcc) = Cz t Tco) = Gt C ,

{ Iii: :c:: 's: :c:c
.
. .

-

L

-

,

T Ch) = Cz X n t C ,
ur

base case(
Tco) -- C

, => D- Cn){
ten , = Czxntci

Second Example :

Bcn) :

if nzp=l :

for i in range Cn) :

print i

Bcn - l)

Tcn) -- { G if n=o
Cs t Tcn- l) if n >=/
in

→ m2

Tco) = C
. T

Tci) = A t Tch -1) = h t Tco) = n t Cl

→ = ht n t Cs{ Iii 's :3 : 't:'t , n'III.→ minute . Xo
- n -

Tch) = nxn + c , = n
>
f- C ,

↳ { Tco) - c ,Tch)=h2 + c ,
⇒ O Cny

Substitution method :

I . Guess the form of the solution

2 . Use mathematical induction to find the cosnstants and show that the solution

Exarate :
Bcn) :

if nzp=l : C ,

for i in range Cn) : Cz

print i C3
Bcn - 1) FIAT ten -DIETS

Tcn) -- { G if n=o
Gt Czxcn) + Tch- l)

'

if nz /

Tco) -- Ci f
Tci) = Cs t Cs t Tch - l) = Cz t C.3×1 t C ,

Tca) = Cz t Cz x2 t Tch- l)→ = Cz t Cz x2 t Cz t Cz x 2 t Cl
u - - -

- r - -

Tcn) = Can t Cz x (Zita i) t C ,

Mr

K
1+2+3-14 t -

- - - t n - 2 t n - I th(-

-

Eun "" "" " "

ow,↳ Tch) = Can t Cz × t C ,

Example : Binary search
¥JFHG&IE4BzI¥g - TE¥tBaGG

42¥22 , Eli insat n -- 2
" for K =o , I , 2,3 - - .

.

He binary search / merge sort

T
\

C , { TCG)

Cz - - f ↳

y
>
¥4 -¥ 713) TCD

= i:÷¥÷÷÷÷÷÷÷÷÷÷÷÷÷:÷÷¥¥÷÷.¢ for the sake of simplicity

23k¥51#ESET
assumption#FE, ¥g5, Ka

4.3487 complexity fifthlyBase case :

¥ n
-

- I Third'THE
,
Tcc) -- C , (3. fAkJ3¥ifEdST THE.EE#zvaluetxft3EhE)

~

11 Every input size is 2K for k= o . i , z , 3,4 - - - - AX = N

Tk) = Cat TCI) = Cat TCI) = Cztc ,
t -- log AN

TCU) = ca t T (E) = Cz t Tcs)# Gt Cz t C ,

TC 8) = Cst T CI) = Cz t TC4)¥-1 Ce te t c ,

- -

L - I

Tln) -- Cz * log N t C , ⇒ Tca) = 0(log n)

Example : Merge Sort

÷
-

→
y

His -4 'aFEBk¥H¥¥⇒AtT£igk

-
call } By-

re f't Merge TEETHE, GALIK#¥⇒tEBzmage
Cz 448 - Estes'¥tE , ↳ n¥zi¥#LTTEmerge

Eg-2ft inane size n
, Gn BEAST at#

"

TC 's = Ci L⇒B ,
Eti.IE#iFEafKE-TCnI--CztCzxnt2TCE)

"
-

→ hIFHGtx9-AJ-TE.IE#Ci-fEzGfFz
→ FREE'E# Fei RE-TAKE - 'KEK EEG't Aot , nf¥G9.

Tak Ci g 73E-ftkgtaftk.gg

t.EE:1#s:2nIEE--:::I.:::I.::.i...-
- a

Tcn) = (n- 1) x Cz t n +Ci f

¥'i5x'THE abstract (with u)
-E

. .GG KEELEEL

Tcn) = Cz t Cs n t ④ C-⑤\¥
= at¥Ti¥⇒④tc¥)
-

==¥zGt Czcntntn , t 8 TC

- n - t) C - t Cz n logan t n TCI) ⇒ Tch) : O '(n log n)
me

→ logs N 'T Cz n

I

C 2 t C3n +2T CI)
a →

CstGn t 2T CE) Crtc
, n t 2TCITY

← d
'

→
Catgut 2T CF) catgut 2TCj) : CatGn t 24¥) catgut 2TCj)

:

Reversion tree
TCI) = C

Tch) = 2TCI) t Cn for n > I↳
on ,att'¥hEF±¥Ef -T merge sire LIKERT AG merge #Gaffe

µ
ET -KJKS-cntf-E.SI#I2F.Ekafinuttdfmeorge Zehaf Moffat
↳ Cn * Ign

i¥¥E¥¥ Base case EEti'I n'- Kate#¥, FIFE merge sort Ff
- hdtgttt , II Base case 4 , I'F£FE,# recursively ft merges

20 an #Ezd2ctE£¥a¥. Sontag cost
⇒ / \ ¥t¥aSz n'Te

r n n

l l l l l l l
2 CJ Cz

j ←¥¥n ¥¥h → 44 cxzi = Cn

n

'

Et -¥e¥t¥cn . .EE#tsIEe? ! ! ! ! ! ! ! ! !
E.Eff Ign E, ,

¥iA# c
.

.

HE'a -E.IIE , Ig 1=0 219 " c c c c c c c c → on

ESTATE.¥¥ Ign ti Ea
i
. Tcn) = Cn x (Ign ti) = Cn Ign t Cn E O Cn Ign)

→FI recursion - tree # : Each node represent the cost of a single subproblem , we sum the costs within

each level of the tree to obtain
a
set of per- level costs , and then we

sum all the per level cost to determine the total cost

A recursion tree example :

Tch) = 3TCEI,]) t f Cn's
(NZ

+game ,

⇐ tent ←¥¥⇐s2 → 3xcxFI= cnn.fi

÷E±⇒E¥i¥i⇐÷⇐÷a⇒÷⇐.iq?a.:r=sxsx*x--#os2xCn2!.Isnn-nn:....nnnn-
Level GAEA ¥9, bairoblem FELT.is#sztgEfyz'zsz9Eq-TleveltxGttgS'¥¥¥ef¥-4¥ FIGHT subproblem Et YEGG

↳ ¥E¥ , EFFIE -7¥ , Eti 3x3 T ,
→I -Ey

Htt-HI¥¥eEE&k± = 31094" s n 10843 g-

Total : Tcn) = Cnt t Cn-x tf t Cn2× ⇐T + Cast (⇒ 3
cnzt

"94 " Ina
to Cn

"943
,

= ¥2!!
"

(Tf) : easy -0 (n'oohs,
un
I

= Tj cuz + Q Cnlogu)
= 0cm)

3 4

Every time divide a Noblem into × IT subproblem of input y
¥i&£ :#og + N tf → C¥H= Asaf notte

, Logan =D ,
#litho#TY)

Ef -E. TEL : g = y
"

= g
"9' "

log, N
→ 2Fa : 4

Exercise
Lecture 02 :

* Re-write the insertion - sort algorithm to sort into non - increasing instead
of non - decreasing order

for j=2 to A
- length

key = AE's]
⇒ i -- J - I

while i > o and AE i] 2 key
A [it I] = AID

f- I - I

AEITI] -

- key

* what is thest of the insertion sore algorithm on the array
A- = (30 , 41 , TJ ,

23 , 41 , 523

6-151-4-13 t 2
I 23 , 30 , 41 , 55,

41
, 5 2

20 Steals
23,30 , 41 ,

41 , JJ , J2

23 , 30 , 41 , 41 , 52,5J

Lecture 03

3. I - l . Let fch) and gcn) be asymptotically nonnegative functions . Using the basic
definition of a notation , prove that max Cfcn) , gcn)) = O

CfcnjtgcnDmaxC-fcnj.gcnjJE2xCfcnstgcnsJo@Cnassatei.s:S:: is:c:#son.
Max Cfcn) , gens) z f Cfcnstgcnlj

>

.

'

. -2 Cfcnstgcns) 2 Max Cefn) , gars) 22 Cfcnitgcns)
t

-

'

. Max (fans , gong, = -0 (f-on , tgcnsj

3. I - 3- Explain why the statement . " The running time of algorithm A is at least
och 2) ,

' ' is meaningless
↳ Big - O notation implies an upper bound of a function , the statement

however gives a lower hound on the running time of algorithm A , and

it could mean there exist another ages bound for running time of
algorithm . Therefore the statement contradicts with itself,

Lecture 04 '

-

what is the complexity of the recursive binary search algorithm?

÷
-

-

{TC's
-

-
C ' base case

Tch) = CLT TCI)
c- (n) = Cz t TCI)

= Cst Cz t TCI)
= Ca t Cz t Cz t Ttf)

C - -
n

Tcn) = ↳ * logsH t C,
= Tcn) = -0 ClogsNj

Recursion Tree analysis :

o ⑥ → Fetish.#t.EE#IEEIKJEETEafCCgetmid1ZPF
I

d ⑥
↳

a:{ to,

I

- :

logsNtl C

→ C x (1092N ti) = Clog-N t C

Lecter 05
'

.

Derive the complexity of the four different recurrence relations

↳ tafrfzti.IE#HItttxGACn) , Bcn) , Binary search In Merge sort

r

def Q l - 3 Cn) :

if nL=l : H Ch

print n C
, I

else if n is odd : 2 Cn

print n Cz I
Q 1.3cm -11) 3 z' Cn

else : I

print n Cz 4

Q 1.3 CE)

Tcl) -- C ,

Tca) = Cz f- TCI) = Gtc ,

TC 's) = Cat Tcntl) = Cst TC 4)
TH) = Cat Tczh g. + cat , 2

= ↳ + Gta +1

Tch)= Cat
' Czxlogzcntl) t C ,

NT- completeness

* Polynomial - time algorithms : on input of size n , their worse case running time
is O (nk) for some constant K

25¥ verifiable?
if we were somehow given a

" cretificate " of a solution
, then we could verify

that the certificate in time polynomial in the size of the input to the problem .

A problem x is a decision problem ifi¥:÷:
":÷:.ie#emine....u

details of the instance

- Decision

3TIEKGGi7.EE/!yppj:pecision%0blems that ate sdvabplevinqpolynomialq.me
i. ¥⇒¥sz¥±

Problems that akdkkifigbks.in Polynomial time

Non - Deterministic Turing machine :
'TE -*tf:&. .bg#EffhiEz.EFttRtE.hFZEiE-Ti77EE , ZIEL
HEGE 't E#¥¥¥¥Z¥ 'VE . EFE MGB Elk

↳

TENT

FtH¥t4 ,
9 INT'¥zxfi7&eGfI¥¥L#kJ EIGG technique.at#HxteiEEtxf Decision problemGG.EE#tfEoO3timizutionproblem → decision nobler

↳ shortest path → Is a path with at most k edges exist ?

¥b¥3== He ? #E¥#tiffttt-EEINHI.FI#Iafi77EEEtIII #A- Fah ? polynomial time . #Haze
forties f- Nt .

'

¥14 HEEL?
↳ Reduction ! "¥s*E¥-THIELE . THE.EE#EEEEFu-tEaik4Z5 -T BEE

. Atkins - Tif'¥E eoF¥fEI#z¥
↳Gia.IE#esFja-& "

↳
Any instance of A can be transformed in polynomial time into an instance of B
in an answer Terseruing way

7, a
.
Given a set S of n integers , does S contain the value 4 ?

22 : Given a set S of n itegets . does S contain the target integer k ?

↳ 9. Ella '¥ ⇒ 7 , reduce to K V ⇒ 7 , tea 'E¥¥e

72 tell
'
'

¥ ⇒ 72 reduce to 7, ⇒ ✓
t T

S
' Hi s - K -14 → THE481¥# k

Exercise :

A : Given a set S of n integers , are there more positive than negative integers

in the set ?

B .

.
Given a set S of n integers

,
is the sum of the set positive ?

Reduce problem A to problem B

s s'=1m*xsiF→
Yes

us
'es

→

I → No → No
-

SAT C Boolean satisfiability problem) ftp.jz#aEtEi73EE
An instance of SAT is a boolean formula of composed of

1 , n boolean variables : X
. , Xz , -

. . . ,
In

2 . M boolean connectives : any boolean function with one or two inputs and one

out Tut , such as A CAND) ,
VCOR)

,

- CN OT)
,
→ (implication 3 , ←> (iff

3- parentheses (Ffg 's)
↳ if.FI#ExffETIpFYjteIf E is there

a way to assign True and False to the variables in E so that E

is true IFENG.IE ,
is E satisfiable ?

↳ ¥Fi¥iEE EIGG ?EF7E true, Taitz 'ETE&saG variable#satiate #EIEEF.EE#tLue

Cook - Levin Theorem :

Let x be any problem in N}
,
then x can be reduce to SAT

↳ #¥iI¥xt¥G't TEE NT complete i Every problem in H2 can be reduced to AR - complete

↳
GELLI'¥EHIIIaH -TNT - complete if Ftt# polynomial time t.is#Ee2E.tBEJIE
Aiff AST# KRAIG i7¥¥t¥fFtt # ovlynomial time Faze : 7- Nf

* A problem X is AR - complete if i

{ ' EM I { x in Ne

V 'T E NT , Y reduces to X [IT C- NK and 4 reduces to X

II#HERE,

Example proof:
3- CNE is NT complete

(F CNE : expressed as an AND of clauses
,
each of which is the OR of↳

¥7345 one or more literals

↳ (X , V nd ,
V - Xz) A Cx, v da V dy) n C- X ,

V - ↳ V -he)
-

-
-

3T

-3'T
TIEA- 3- CNE is m2 complete → II SAT reduce t 3 CHF - SAT

* CHF - SATIE - T NT complete

Example problem : K - clique 3103km : Given a graph G and an integer k , does G- contain

a set of K vertices that are all directly connected by
edges ?

27 Reduce CNE - SAT to K- clique

CNE- SAT :

E = Cti v - x, V - Xs) A C - X , Vds Vds) A Cx
, V X z V 43)

↳ Last 45 Variable boolean t¥ , FEI E # true

↳ Et 'T clauses tie - T vertex, an brc # true iff ft -T IIIT# tag
graph *Theft a → b-7 c BG connected graph
I ¥STtLIn¥Ft¥ - Ef K-

G → clique GHG , 'Tilsit '¥Ft -
⇐ftp.GEF#IafEIIEFH-8
E# true

* Structure of H2- completes

CIRCUIT - SAT

I
SAT
t

CNE - SAT

← → SUBSET - SUM

CLIQUE
4

VERTEX COVER

4

HAM- CYCLE
t
Tsp

K- clique to K- cover

K- cover i Let G be a graph CV, E) .
A vertex cover of G is a

subset S of V with the property that every edge in E has
at least one end in S

.
A K- vertex cover that contains exactly

K vertices .

G E
-

-

w k
kB¥-TcomdeeekSaphh

↳#n¥¥E4¥± cover VC VII staff
,

cover VII - EE vertex ¥¥¥
-T

graph * A- ftp.safedge#afE.yff-feadeoineFIE 'T
cover UGG vortex 4)

k¥2 K - clique 4G 't k , HIGH Ff KT vertexFLIER# connected graph

f-STH 427K¥ K- cover i7¥¥4, Ih ETI#Ft n- KT vertex k¥55
Lag vertex cover ,

¥-T clique -

J
G a G

- -
-I

'

O
-

-

i O

if 0-0--1
¥'¥¥±

- T clique safes → vertex Eat 'Et
d

'X'IF'¥EE¥¥ EEG vertex Covel
-

Hooft E 4, Take a- ki 't venice 4¥ Thi vertex cover

④
'Ek 'T 22772155 vertex cover Saf vortices Zita # THE¥417

- ¥ - edge
,
-4

II.Elitist# EL vertex cover of
Hr

1¥# G4¥¥ ESTA E 432¥47 edge
I

EETHEG#£ kit vertices # i EH ¥854
K

k - clique !

Textbook - ¥41,54874523. :

* Euler tour : An Euler tour of a connected , directed graph G- =CV, E) is a

cycle that traverse each edge of Ct exactly once , although
it's allowed to visit each vertex more than once

.

*Hamiltonian cycle : A hamiltonian cycle of a directed graph G'- CHE) is a simple

cycle that contains each vertex in V .

show that Hamiltonian problem is Hac

EEE'¥Eni¥ HK :{k¥1 cover

SAT reduce to k clique reduce to k vertex

*Hamiltonian cycle : A hamiltonian cycle of a directed graph G'- CHE) is a simple

cycle that contains each vertex in V .

↳ Given a graph CT and an integer k, does CT

→
K- cover

¥÷*iYK → → No
-7 ktedgeg.IE
-

o v

' :**e .

° O \ see of edges
O l

t a
edge -- e d

U
¥¥ hamiltocyde

d

tithe -TIE.IR#kRedge
Laf cycle

et e
'
=

I -12-13-1 . .
. . y U

=

(Vtt) +
V

-
2

* Hamiltonian cycle : A Kamil-Ionian cycle of a directed graph G- '- CHE) is a simple

cycle that contains each vertex in V .

↳ Given a graph CT and an integer k, does CT

→
K- cover

±ues/K → No
→
-

÷
¥1 K¥4 e

.

O O \ see of edgesO l V
T

K - cover : Is# KT vertices,
t

⇒ Fifth# If edge Haffey. - 4
.

¥¥ hamiltocyde
d

F±k'T Venice 4 ¥¥ - th'¥E&Fakr
Late

µ ↳ Cuts • k
edge -- e Z

-

V

et e
'
=

I -12-13-1 . .
. . y U

=

(Vtt) +
V

-
2

TAHITI KT vertex ¥73 vfzv- E) Ef edge

such that every edge CVC's v -s
'
s) 4¥ a

-T end# ¥'¥
,

- =L
,

o O

③ %⇐ * vein" iH¥
rest -E) 7k .µy

(S

a- → io¥ o

K - cover : Is# KT vertices, #
t

O

III. 3249¥17.EE?dfettn.tE5fa-4. ④ ¥¥. hamitiocyde

← ¥E4 THEE's v # edge

Ea. edge -8472¥ : lgucuty 's vcv- I)

or a↳
¥4. Iv cutis - N ¥52 VCE v -⇒ Hedge
just Ev - V k¥-4744

, K - vertex cover

KINE KT Evertices such that

I ✓ 2 - I V REE VC's v -I) # edge staff -EtfBEG
→
K < = V

v C 's v - I , tf edge
6×42×6 - E)

6×3 - I

4%2 've #IE K - clique : G4hIhI ¥5

→
" ¥ at most f

edge

° F
O O 0¥'¥¥¥±#i FEE

.
O O

'

E. : Velu- Htlv- y t . . . + z + ,
GtJt4 t.lt?t/y#)

I xvx (Vtt) \#
I xvxcvtlj - V
-

I
'
v2 tsu - W
I use - I

G E
O

O O⇐ a¥¥
O l

K - vertex cover FTII Hamilton cycle ¥hIneed

÷
His'ZtChE3I2) Hamilton Cycle IIE :

LIE k¥5 FAE v# edge

G- & K - vertex coverTEETH?
TIGHE BHILI Ivatt) • ✓ E. edge

Divide and Conquer
↳ Divide and conquer '¥E¥4¥¥ItaGG¥§y ,

-44454¥ If 'THE
↳ formation : In divide and conquer, we solve a Holden recursively , applying three steps

at each level of the recursion :

Divide the problem into a number of subproblem that are smaller instances of the same problem
.

-

conquer the subproblem, by solving them recursively .LI#KEiEFzEJzhIS base case # EGIE.EL-IEG.EC#ETi7BaEIf
Combine the solutions to the subproblem5 into the solution for the original problem

complexity for divide and conquer :

* Suppose that the division of the problem yields ⑥ sub problems ,
each of

is ⑤ the size of original CIE takes time to solve one

subproblem of size Ib) ,
D Ch) time to divide the problem into sub problems

,

Ccn) to combine the solutions to the subproblem s
.

Base case

Tcn) = { CE) + Cn) t Ccn) otherwise
nun in

an

f t d

atsubproblem of size -1 divide combine

* A recursive algorithm might divide subproblem in different sizes
* FTII subproblem Gf size Iq fraction of the original problem size

Binary Search

Example DRC Algorithm {QuicksoreMerge sort
-
-
- -

Binary search :

y
THEE.EE?NiEh-,trHEEoE-f:EiE5ztifcy.s

Binary - search CA , -4 : # Assume A is already sorted

if A has less than ④ elements :
perform sequential search III'EgE¥ef€

else :

Divide A into two equal subsequences
Comeau t with the last element of the first half of A (mid)
if e L mid :

Binary search (first half,
else :

Binary search (second half,

Tcn) -- -01 he 4 → Base Case{ Tcas -

- TCI, to us ,
n > y ⇒ ten, = { ""

'

- OCD
.

" ' 4

Tcu) : K TCI) t Dcn) C- day↳ Tcu) -- oclogn) - T T
EE. "n¥, IT subproblem,
Ff# EEE II

- T half

Merge sore : Divide the n- element sequence to be sorted into two sequences of In elements
each

, sort the two subsequences recursively using merge sort , then merge
the two sorted

arrays .↳
±*¥¥¥Ett¥E¥m ⇒ A

I;¥± - t sorted awayt

(If'EGFI combine A [gu, riaz 'S- It sorted away
µ return

✓ sorted Away Act - t)

} oars → 21124¥53. Aia.tt/EEkahiiHE

} ocn) /

z } Sentinel value , so that
⇒ Mette tht tanning time Tcu) E Ocn,

FATIH Gretta.GE#t-tIET-
n

whenever a card with W isexeosed.IE?'E-T-tEtEiEz3iEGfkIE - T-THEE, min @Ei] , RE 's])
↳ ' fzz.at#jfx-z-tlistEfh--QF T - #

¥3-41¥ LE T J RE J

} och)
⇒

A E
V

]

Merge Great Pseudo code

Analyzing divide and conquer algorithm
* Eff recursive call GG algorithm HG running time 'z¥Ff#

Le Currence equation or recurrence = tanning time
on a problem of size u

to

L 7

t
base case

If 'T Merge sore :

p
merge GG #ti

Tcn) - OLD nosy → Base Case { TO)= -0 Cl)
Tch) = 2x TLE) to cry ,

n > 4 Tcn) -- 2x TLE) t EY t&
Tca) -- O Cnlogn, I '

Y

Robin Dawes ' :

Merge sore CA) : →
¥2'¥nEt⇒EiEtd¥GA .

ETEF any constant

if A has a J elements :

sort A using any method
else :

Merge sore (left half of A)
Merge sore (tight half of A)
Merge the two sorted half together into one hell sorted set

↳ Tcn) = C , → Base case in 2=5

Tch)
= Cst Cs * n e 2T CI) n >T

#n¥If4if -4¥. Ek El- F merge sort , I merge sort Eyak divide into three eaves ?

↳ 22h12. # , #HI.EE. recursive call 3.⇐FEET#EFFIE merge IT array ,
Safra TATER'E*

Tca) : Cats # n e 3 # TCF) =3 O Cnlogn) KITE-¥¥GF

Quick sort :

Quick - sort CA) :

①
→ Ff -44Gt , any constant

if A has less than 4 elements :

sort A using any algorithm BELIE
else : randomly EEN - T element 9 , FEAST# Eeg t.GG#fIqGg

#
THA't

9 '- eatin CA) TIED , AHF -w9ktxGEk¥9Gf5Lb
runner

Quick - sort CA El , - - - -

, 9- IT)

Quick - sort CAI 9 . - -
- -

s n]) ¥f¥¥zfE¥f - TFttIHf3t'T
→ midpoint at ¥. . ,

Worst case : ETHEL'RE't 9¥.tt#LtEFfzE5I2Et&5JE-fE , HER#Q'¥1 - T quick sort By sore n - I
Tay = CD

,
nk4 *'a'¥272t.IE#ETTEEIFtEEFFfnTtecursivecayTCnj--TCn

- l) to Cn) , n 74&
Tay =fCnT→ Half n -kata , # Exit #'THI -TEE ,

Best case : FALLE# Gfa #HEHE'¥Sz midline, f¥¥f2¥⇒f .VE#tfEEfFf element ¥24

{ Tent = -04 , n±4

Tcu) = 2.TCI) t o Cn) ,
n 74

↳ Tca) = ⑤ Calognj

Maximum subarray Problem

The maximum - sub array problem :

* Given an Array A of n integers, can we find a subway Ati.- - - - -

' j] ,
where the sum

of its elements is the maximum ?

↳ Brute force : f- Cny ,
£¥aFgEEfEfF¥E

See al case :

A #EEK value ¥13 20 : ¥±fEft¥I
AH #Ee value that so : EI-tIEtp-EE.IE

AN xuimmummssubbaraayy CAD : Tcn) in -0 Clog n)
if I # I ⇐ E :

Find #the mmaaxuimmam-suubbaraa.gg using brute force
else :

Divide *the army into A ELI , amid D and A- Emmi'd # I , - .
.

. at

Maximum
.

Kabba#ayy I
#ELI . . - - n. . mmiidd# D

Aka* imam
-
Kubatyay C # Emmi'd # t , - - - ⇒ MID

#ethan one of the ssuubbakkaayy with a greater Samm

KEEFE Ii (subset I ET TAA subset sum GG'¥¥t

IEEE-Tanay ,
'ET subway FEE#E'2¥

mid

IITEHEIMIIMIIIIIm.tl } ¥f¥Gf¥¥EEEEEE⇒←¥⇐¥HIIIIIIMIII¥
mid HIA

'

Eg FEAT assume taf¥Ei¥tET#¥#¥i¥a¥GG Subset e3ft

1IIIIIW¥hInIIII → what if the subway happen here ? FIE #445854¥'¥±
Nxne

Max - Crossing - Subang CA)
&

I

- tIIIIIT¥ → sum

~ Effi ' cross'¥'T mid rIIII#¥ → sum

EIIBIE.ae#If → sum

41

H-midEBYG.IE a

}¥¥¥⇐¥¥¥¥¥÷÷¥*±*⇒.N { ¥¥t¥¥¥

⇒ Tcn) is in OC)

FIEHEIIIII
'

n f y
"÷÷i¥¥a¥¥÷÷÷÷

--

-

Maximum - Subarray CA) :

if IAI E T :

Find the maximum - subatnay using brute force
else :

Divide the array into A El . - - --

,
mid] and A [mid ti , . . . , n]

Maximum
. Subanhay CALI , mid]) → fI¥y¥¥Lt¥±GG

Maximum
- Subway (A [mid-et , , nz) → FIE't -844*5*84

Khai - crossing - subway CA) → I-5¥ 't It 48889-75×5%4
Return one of the sub away with a greater sum (IT'¥EA IF- TITTIES,

Tcn) = Ci , n I 5

→
Max .

Crossing{
Ten , = 2xTCE , turn ,

n > T

↳ Tcu) is in o Cnlogn)

→ divide
49%55854 conquer

yammer }¥¥¥ 's:::is÷÷¥⇐
the original problem size

*
IT

}
Combine

Finding the closet fair of points

Problem : Finding the closet pair of points in a set 2 in metric Race of n 22 points

* Distance is measure in Euclidean distance
↳ He EIEEHIIH-tafnTE.it, FEE, Ek EE¥5¥IAG # 4¥. .

Brute force : 549g FEIGE'¥qExE¥ :
Min = W j

For every point i in the set :

⇐ ""

÷
.

e: is .in:*.ci. ; , } an"if distance Cis 's , 2=0 :

smallest = f's ;

tetum smallest

Divide and conquer :

Divide : IEEE'T see TH't
' ht # '¥5154, FAT subproblem, K #app

conquer : Tifft-67417117
't 'T Iihf K # 3*4%7'¥xt; E. 8 = minces ,p*,

combine : Eat .EE#ztGfEkiEkIFxtiEfkiE7*iIa t.EU#f-T.E.Ik4s-TE..hIP*4fJu5fYafiIn*.

g g
if'÷¥¥3, '.Hff¥y -4¥. LIE ,

- t.E.IE#GfiIIxt-taF ?

a- FEE .AE#IzfI-xfEEEat-u8iEtta9-E...EA- 'HEE ,

-THEE , af¥
.
.si/-iEFtfIFHa

ME 284
' GSEIET

Is #ftki¥2 8. KNIFES ? → He'¥i÷fEfI¥ ,
- Na ?# s

'
f
, # IIHFE.EE#fFTaEtEIEEEiIEf'¥

b. CAI#
'

E. tutti ?) :
'Ittf - T array Y

'

,
Y' '4¥3HHFGG # 'ET vertical strip # Tas. ¥. .

C . For each point in Y
' :(Hit .GE E) } -

Tty to find points in Y
'

that are within f unit with current point /if distance < current small :

caveat Snnaall = Current- Zain

if EXETER ''¥#HEI - TIB# f.Ef if '¥¥i, #HE Eff Tin, ¥¥Hh
t

Ef

y Ion x (Ion - l) K n
'
,
what difference?

28
I'¥¥iIEA3 , For every point in Y

'

, -3. '¥Ef¥¥± 74¥.
I'Httke ? :

- I 1¥'AE¥y TEETH .SE#EIzt-GGIEEz-- 8
EEL.LI#EFiETEIEftafE..FtEfLA4T , # 'A #a'Fa¥tIEGG¥.tt#EE4E.EtiIE5EEEa4FE,

i '
tf 8

l l
EfE¥ , Fitz# Ei¥x'752¥44

\ a 7k I
1¥# Hi EIIGGE.AE#EEh7EttIEttI*aE.F4tt 45¥ 4-14=8 4¥ .

• • B
RTI 'FEfFz6TCfE#EE⇐f¥. ¥)

g. qq.iq/q..................,.,........,e...........\ !
l

l

-
28

{seudocode :
closet- pair (Tj :

if 1312-4 :

Find the closest pain using brute - force
else :

Divide the set into a left half 3L and a right half K
f s = Closet - Zain Ck)

SR = Closet - fair CTR,

f = min (SL
,
ft)

Y 's EERIE HEI S¥iI¥Gf¥ .

Eta #FIE, IET
'

EE.ES?Iattafeaih

if f ' 2=8 :

return Y' 475, f ,

else i

return 2/7*4'¥aI'

am- { 'Ii; ? test
.

th
' land 'E¥t.

Convex Hull
w--

The convex hull of a set a of points , is the smallest convex polygon 7 for which each point in Q is either on the boundary
F-

of 9 or in its interior
.
Cf¥Gf¥z¥¥tGfYaE EAT- EST#¥.GG HI 3¥24#g)

→ Sastha ftp.IEEEE#FEFoHE -T given n mints FfI¥y convex hull

Brute force : Ocn3)

Divide & conquer Algorithm
↳#2¥, -14 . . .

Divide Tat ¥
.
sorted#f. HEIFER, 7*(8*4345,5)

Conquer ¥2 ,
7*4 Tilt-5¥ 't convex hull

combine fer k
, 3*4%7 convex hull & combineEEE

It'¥EE7u , Flitter base case i£¥±# 3, If#Eat-5¥. If -85k¥# 3.at#tiJttEIHh.Eabs ,

if ,
ix.Tea merge combine) ? ? ?

↳ *a '¥t# ikthk.si?EfEtIiIa?aIEETaEZEEEIF -EE.FI#taHeEIiIaTE-tBEdsEEEntiEl3 Gf¥
.

Ya E #

the'I¥A¥Ei :

I . Connecting the tight most point on left 's convex hull to the left most point on the Leight

*¥0
"

0

lot
2. KEEFE. Etf-5 , ELE 't ft'd,

- ¥ edge.Ex¥aB¥p£F 1800
O Ch)

To Eye 'I¥¥fEH'T 1800%9 AID SE. .

" '' }
toQ2

4- Fft , TITLE Az , 13214k'T 1854948
'

Jarvis 's match algorithm
t.iq#B*Bu7ibHA--fE4 , H- Taffe convex hull Itai

. .
- tuk ,

'E¥L¥*x3¥Z¥④%G¥. .

i. fifth#E-
E. Gates)'¥aKTKaG¥. µ¥S¥g&t44

'

l l
↳ complexity i z -

-
- -

-

I -
-
-

0Cn*h) → Et# xfg Et - TfE¥'Hat
-
-
- - ⇒

µ 1¥ . - - - - -
-

¥.CH#tEEvtEE*eIFG9-fSTtFGS- ¥.# t -

-

y
'

y
kEeEEEi4

'

Il '
-
- ⇐
,Titta't talk l p-

l l l '

-
e

d l -
u

l l

¥ n#E¥e¥.¥aHE convex hull # y l

"

µ
l l l

O Ch) (worst) l
- e.
.

'

'¥ convex hull has no more than
,
-

I = -
- - -4

-
-

E i
l l

K T vertex : O Ch# h) l l

l
,

I

↳ ok, i
i

Subset Sum

Given a set S of n integers and a target value K
, does s have a subset that sum to k ?

Brute force : fee#¥312
" #GF Et't t.EE#.Ea4EFai3IaEFEEtiG7 ⇒ o (27

fair sum :

Given a set s of n integers and a target integer k, does s contain a pain of values that sum to k ?

→ FLIES ##¥EEftEEI¥
E t -- S . + Sn

Irs'¥t==k : JEET

#
'¥ t L K : IES, EE DA 'D, El# s, tI÷kGGSn¥%kI.tn#y89Fgizef-KJyn4t7k:-fESntHb3

,
IAI

complexity : O Cn * login) to cry → O Calognj
e- -

v u

sorting III. →EfI¥¥¥¥ IT

µL
Two set fair - Sum :

Given sets X and Y with n elements in each set , and a target integer k, is there an

X E X and a y E Y such that xty
-

- k ?

↳ ¥¥¥ - ¥4 , Fu sore X Ir Y, CE'¥ assume
'
'

E -the X . - T # yah tha Ty

E e -

- X , tyn

Irs'¥t==k : fifty

#
'¥ t L K : FIX, EE DA 'D, El# s, tI÷kGGSn KI.tn#ysa9Fgizef-kJynIt7ki-fEYntHI3

,
IAI

complexity : ocnlvgn) t OC n)
- -

sort ttteairta't 4¥

So ! - #tEkExf¥f¥' GG subset Sumit , fat :

- #H¥GF Subset sum → Fanti element, fifty. #¥2
" T subset

,
- T - T IE text

fight kit, fifth complexity = O (27

↳ a elements
nv

EE¥f S, ¥2524453't ?-¥ = , AGH- k¥-55
-

'

¥5532 # O (2£)
j y{ a .io#:i::iii::::::s:÷÷÷÷÷÷÷. :*:: "::÷÷.↳ Complex-city of sort : 2£ * log n * 2 E O (n #2%

Tnerge
⇒ 7¥.kz#e 2 set pair - sum → 2*0 (2£)↳ 2*oczE) t Ocn # 2£, t 2*065

H

O (n# 2£,

Exercise :

Finds three values from A , 13 , c ,
sums to a target K

(we can call the Tuo set pair Sum function we wrote)

① IE set A. B # '¥ -Torain ¥zf¥x see DA, ⇒ OCD

② See D
'
to set C , target KE, I Tuo set Pair Sum &

34.5 - 4 : show how to solve the subset - sum in polynomial time if the target value is expressed in unary

Unary : 5 '

- 11111

33.3 - 3 : Hove that the pair of points farthest from each other must be vertices of CHCQJ
to Assume there exist a convex hull which doesn't include the pain of points farthest from each

other : For every edge that forms convex hull , it has length that doesn't longer than the farthest edge exist

t
there exist at least one point that doesn't lay inside the

convex hall

t
it does not on the convex hull because thats what the assumption

say

to

this convex hell is not a convex hull

I

The pair of points farthest from each other must be vertices of

CH Coy

33-4-5 : -
- -

4- I - 5 :

Max num = - X j

Max lair = null ;

while it

Greedy Algorithm

↳ Greedy algorithm always makes the choice that looks best at the moment .

That

is
,
it makes a locally optimum choice in the hope that this choice will lead to

a globally optimal solution .

if'TEEl : Road Trip
* tEEIIEIFItafitt.9.IE H- A # 'IB

,

'Etta 't't't gas station , then his #HELI.IE#EEFJt-tFtE
'

Et AGGIE and E.Feet; GG # IEEE -TE ?

I . Sort the stations according to the distance from A
↳ { So , Si

,
Sz

,
-
- - Sn

, Sinti }
- err

① 4
A B

2- Road Trip (Si) : # Leaving at Si with a full tank
f- itt

while E L n and set , is reachable :

ett CE.IE#E==nEfst-iI-fzE4E teach #ft, loop)
if e==n :

stop # we have arrived

else :

fill us gas at St

Road Trip Cst)
complexity : O Cnlogn) c- och,

⇒ O Cnlogn)
- -

sort
" actual ' ' algorithm

IIA.tt#htl4ElT algorithm generate tf¥GG¥fE¥ optimal Taf

Assume A- = {a . , as . - - - an } is a solution generated by this algorithm
Roof by induction:

Base case : if n=o , EFFI #4242 ICE AGGIE '2¥t%¥tIhItF gas Elation , if there is a

feasible solution C¥=f¥ - 25¥ 's # #¥'t 'RE)
,

T algorithm -7ft E'¥aHifE
Assumption : HE -4*424510-5

-TEH't 217 , Elite # IF #It XTEE for which
x Ek

, algorithm '¥K¥E£E¥j

i¥htih4
Hoof : ktl :

fE¥i2Eeaf ,
algorithm ItIiGG4aE&A : {a . . as .

- . . }

optimal -fIIiktFE4¥ D= { Oi , Oz ,
- - - . }

f¥#¥¥z¥Gfi2H ,
#H- ZHI Elst a.GG#T-4¥ EEE# IF

,
AGH. Oita FESTE if E, # a. 2¥ , ESTH.

Oi # a. Lita, ⇐ > 0,2*102477=433%72# ⇒ a. ¥102 sit '¥¥f¥EfEEFI¥
↳ IEA IIA-A-3.IE a. ¥.EE#fEgZ O , → { a , , o, ,q . . . } EEE

- T optimal solution

since (Ea , ,0z -
- - } I = Ioc , Oa - - - I

i. a ,
is part of an optimal solution

-

: Assumption : {Az , as - - - . } is also an optimal solution

Fyffe a . ¥2 {as , as - - - - 34¥ ETI - IE

↳ puff 'z -Tif : http 's # EE a . Ii '¥i¥ 't B , EEE't {as , as . . .} ¥2 { Oz , Oz . . . 3 that;¥¥Ti73E§Gf optimal solution
↳ Tffk, #HABITATS a. 2ha , IAI = 10*1

,
ESTH IAI 'Fz optimal solution

↳ Algorithm finds an optimal solution for ktl T gas station , Proved !

t.fi?EEz2-. Activity - selection problem

* FEE'iIIHI¥t n'T activity far , as - - - - an } ¥ht¥ ⇐ Ef - qIe¥.fr#qg,fEEhiTEIEiFtidf4EkJ , TEH - ¥4'¥¥z¥ ft#i'¥4
THE EAT-EEF Etta't activity

* si #e fi denote the start time and finish time
- -

Hate EEE activity E's sore# C-EE-FJEEfit.GG finish time)

Atk.EE#EEL 'T II. GAEDE't, ZEE#3,0¥-

Eaff - T¥¥FzE¥GG activity (the first place of the sorted array,

②#Ea # T. - T KEEK't C¥tI '¥EE#tEI overlap ,

kendo - code algorithm :

Activity = { a . .az - -
- - an } It sorted array

Activity Selection C Activity) :

select a ,

current - time = a . - finish
'

me

For i -
- 2 to n :

if ai - stare - time 7 = current - time :

select ai

current - time = ai
-
finish - time

complexity : Ocnlogn) to Cn) ⇒ Ocnlogn)
- -

merge sort the '

actual ' algorithm

Boot by induction :

Base case : if n -- o , II. FEEL-827417 'TIED
.
If# FEI ish 'zIEAFHEZt¥ !

Assumption : for n -- KC Ff k TI 's Zito)
, Activity Selection finds an optimal solution for t St X E k

k -11 :

Hafiz ktl.EE#zfd9- array E. L# Activity Selection =3 {a , , a .
- - - -g

optimal solution ⇒ {o , , Oz
,
- - - -3

EH II, #Hyatt 'v2It : a. if'Ei¥¥¥¥GG ⇒ a # a.ES#F*

¥.tk#4tFzI7uT- , Lts '¥efEa . FELA Oi ⇒ I { ai , Oz , Oz } I = I { 01.02.03 -
- -31

↳ a , is part of an optimal solution

x. : {as ak } is definitely an optimal solution (thanks to assume-Lion)

↳ I'ITH EG YEE HIFI 3 E. kite {a . } #e {as - -
- - ak} merge FEE

↳ Reduced problem .

. KDDI at 7 a. Gf finish time , Ifk,

{at , Az .
.
. . - ax } As { 02 , Os . .

. .
- Ok} ftp.3zoeeimal solution

↳ a-Ha AS a , 233

IAI = 10*1

-

- .AT#zoztimal solution

finds optimal solution for Ktl activities ⇒ bored !

what if we sorted the away with State time ?

A : { a , ,
Az

, Az - - - an Bg O
'

= { Oi , Oz ,

- - - - On}

a. ay. Jo , #HI , 477¥ O, finish IEEE a.¥
, Hey, lay At#452¥. FAI }

THEE : Coin change
FELIZ Ey # EIF : { Penny , nickel , dime , quarter , loonie ,

too nie }
F¥f#±Gents) : { I , 5

,
lo
,

2J
, too

,
200 }

Eek, #EFI'¥aIE&2±)EGI¥'T teeth # LAGE. Fo?

§ Atk. -T greedy #k¥4.9. II. EEE
I#Et:* # I

, HJ . L
, '¥%¥HEfG t.t.FI#akGS- coin , '¥¥ 2=0

Pseudo - code :

¥±¥u : coins = { vi. va.us - - - Via} # k¥4#¥f¥F¥t¥%f¥¥f¥¥Fy

Min coins (m) : # mHiIeSAFxf¥fEtaG target value

K m II t ft'Ee3 remaining amount
,
- FIFTH 14¥43-222¥ , f-STILL

-

- M

while r > o :

find the maximal coin of value ✓ i < u # A# 14¥ constant , ESTH- E'¥¥± OCD

Select a coin of value Vi # LETHE'¥EaE¥FkL#¥49 EEE sort #f3,

mGf¥h⇒¥.EE
r -- r - Vi

Roof :
Boise case : ft HAA DI 'T

(Eon II m 2 5 -

- 03timal solution : MT pennies cc)

(algorithm solution : MT Tenn ies CD ✓

Eos m -

- T : algorithm choose only I nickel (5) ✓

I ② For 52 ML lo : Only solution available is M pennies (t) or I nickel CT) t m - JT Pennies

algorithm solution : I nickel CT) t m - J T pennies (c) ✓

| For m
-

- lo
, algorithm choose only I nickel CJ) ✓

③ For loam < zf : FIE'¥¥A Kit oaitimal
solution FEE #FEET 4 'T pennies c.) EEF# IT pennies f-VIII /

T nickel fE2) ,
THE'¥ , F-TEETH# FLEET - T nickel 2K nickel ¥¥- T dime Cios -t£fzy

(2¥ most total = C 4×1 t Axt) =9 , ESTATE# 9429K¥ IX. EERIE#It - T dime (go,
¥ 102mL 2T LEAFS - 4 dime '2Sz

,
m - lo = m

'

I f 2

O L m
' 2 to go 2M

'
2 1J →# EE - T coin → m

'
- lo s my

t t
I

bored O L m
' ' at proved

1 ¥EEt¥zE¥4iIFE, , Itt-FELIZ't 200

I ¥ HE 200 , algorithm finds optimal solution

Assumption :
the algorithm finds optimal solution for n such that 2002ns k

I'L¥iIEH ktl

Min coin (*tix) = { a , , Az , Az } a , 'The -Connie Gog

optimal = {o , , Oz
, Oz - -

- - }

Supine II oatmeal &, FIFTH ton nie C 200) , IGP It a ,

Lts'¥'2k¥ Lonnie C zoo)
,
THIA'T IIE# 10dm 2254277¥ -4¥

,
optimal solution can

contain at most

loonie (100) xl

quarter Cst) B

pennies CI) x 4
-
-
- - -

-

-

- - - -

-
-
-

- -

.

I /

(
dimes Clo) 42 or dime CD xl

/ nickel CJIXI
"

- f - -
-
- -1 - -t.EE#Ia-TnickelCHFIfaguatGe-t3afYE¥24575.5 - T dime Cio,

quarter -t§f¥

Fast sum up Ig
! lay → Had F-

'E¥¥
,
ASTUTE oitimal solution #

If'¥Ff¥ a . Ctonniel C 2003

II.EFI# m- a. 2E
, kafF¥E¥ft3 of me Ksi , which is optimal by assumption

-

'

. A , is part of an optimal solution

{m - a , } finds optimal solution 0¥

Aetna 's a .
→ IAI = 10*1 → proved !

Note : #FIE#HE eossiblefzta.IT#3FrtAtETEEiEK '¥IFEf¥¥E8z

Example : { I , 4 , 9 } m -

- 12
1

algorithm isolation : 9 , C , I
, I

,

optimal solution : 4 , 4,4

177£44 : knapsack Koblems

↳ Given a container of caseacity K. and a set of items {a . . .
. .

. an 3 , each of which has

mass Mi and value Vi
, we call a subset SE A feasible if I Mi Ek

,
our goal is to

ai ES

find a feasible subsets# that maximizes I.es?+i .

IT 3K¥24 III. A polynomial - time algorithm fa&2kGf 173k¥

SETH. . if"Ekk# modified s µ

↳ Given a container of caseacity K. and a set of items {a . . .
. .

. an 3 , each of which has

mass Mi and value Vi
, we call a subset SE A feasible if I mi k k , our goal is to

ai ES

find a feasible subsets# that maximizes E Vi
. Allowing fractions of objects to be used

,
where

the value of a fraction of an object is the same fraction of the value of the object

Greedy EKS :

Vi
sort the objects in decreasing mi order

while Kao and there are still objects to consider :
i - - - -

- -
- -

- - -
- -

- - - -
-

' Take as much of the next item as possible C
'
- - - - -

- - - -
- - - - - - t

Reduce K by the mass amount just added to the knapsack↳
futz ERKEKIT-2.GG Ee , Queue '¥E#EEE't 3 Xs

fE2E'FEE , FEES Is -_ to 'T xz value : 30

1kHz -1=+0×30 =3
⇐ { mass -

- 20

FIQH : Eor Base case : of object : Hatta stats , ¥eoHimal

Assume-lion : FKS finds the optimal solution for X T object such that XE k

Kei : object : {X , ,
22

, Xs - - - - - Xkti }
FKS find : {3 , ,

72 , 33 , .
- - - 9kt , } # 7 ,

#¥3 Hetton of X
,

oziteimal : { 9 , , 92,93
,

-
- - - 9kt i }

1¥#¥¥2IiafikItGf4⑤E£ ,
AGH. hey'¥n¥F¥EtEk, #4- Sueeose 7, 79,

2- : total - mass (A) = total - mass co)

i . if
' Ftft i where i > I where Ti 29 i for Xi

Let 0¥
= { I ,

9. - g :
'

,
. .
. . . 9kt , } ⇒ 9i 's 9 : - CK - 9 .) # JE X. Gf 's teth

' & (7 , -9 .) x ,
mass =C9i - 9 , -

'

)

I Ximass

↳ Ch - 9 ,) = 9 ; - gil
→

IFFY 9- ←Eli HGS

total
-
value Cott) - total - value Co) = CK - 9 ,) X , .

value - C 99 Xi
.
Value

Xi mass
= (ti - 9 .) x , . value - Chi - 9. James, Xi value

= Chi - 9 .) . × , mass . (dirt -

Xi value
x. mass Tims) 30

Es'EdIftExE :
D= { 91 , 92,93

,
-

- - - 9i , -
- - 9kt I }

⇒ 7, = 9 , t Cali - 9i
')Ott = { 7, , 92 , 93 , -

-

- - 9i
"

'
- - -

- 9kt ' } {Cy, - g ,) × , mass = Cgi - Yi ') di mass
X , mass

(9 ; - 9i ') = Ck - 9 .) -
Ximass

total - mass co) = total - mass (o#)

total - Value (0*1 -
total - Value co) I (3.

- 9 ,) x . . value t C 9i ' - 9i) Xi - value

= Cf - 9.) X. value t 9 i' x ,

- value - 9ixiValue

= (7 . - 9.) X. Value
- 9i Xi Value * gi

'
Xi value

+ q ;
'
× ; value

- 9i ti Value = 4, -9 ,) X. Value - (Gi - gil) xi value
Xi mass

= Cf, - 9.) X. Value - Cli - 9 ,)¥s, Xi value

Xi mass
= ch - 9 .) (x. value - Ias, Xi value)

- 9i x ;
value t

x , value
-

Xi value
- -

= CK - 9 ,) x ,
mass (x. mass Xi mass)

xivalue
X.mass

>
Xi value

-
- - ⇒ total - value Co*) > total - value Co)
- Xi mass

↳
¥¥FtL¥iz¥Gf¥± ,

0*4 X. Caffee ¥2 A # x. GG 's TETE - FIGG (f. =3,)

↳ Safe 0¥ has one fewer difference than Sa and O did
.

↳ FEE I③f¥'Ex until we' reach a state where sa -

- O
- -

- - "

so SA is oitimal

if?E¥I : Huffman Encoding
↳ ECIzEktIE¥ Encode - '¥ string , Fffk , 'Ef 'T #¥af¥f±EGf code

fat. Alphabet : A B C

Code : 001 010 100

↳ FEEL.at#fFH-f7EEzIIEEfzE ? → At# EEG't bit , IT#Et - to'4GFE '¥.

↳ * EEE.tt # F- - EEE'¥IxG bit representation → AIGA '#Esta't FH # t- E. bit
, Effie t-GAFHAFS-E.GG bit

↳ * Ff af
'FEE. 'EEGf7E, At tree H'Ek string representation

O

X
t a s

µ O ⇒ of 000 O O N
e X

O d

a s

¥44 greedy algorithm&GktEgtH¥3 :

① Sort the alphabet base on frequency , low frequency #Fay

② Reheat until element in akhabet > a :

¥211, frequency.IE#fEfaGFtt4 element from alphabet

make them as leaf nodes and any value I or 0

Reduce those two elements with one combined elements in alphabet

Onclogn)
Example :

S= { A. E , D , c , F . B } (sorted, s' "
= { B ,

DC , AEF }
7 8 8 9 11 It 16 17 26
t -

g
To

↳ He
1333

AE Chi O P

mo - DC - 17
B : 16

A E N
§
⇐ g

' ' b E
D
,
c
,
F , AE , 133 8 q

8 9 11 IT 16

- -

y s
' ' ' ' :{ AEE , DCB 3

DC
-

- 17 26 33
DCB AEF

: to

T -

I 0(: : oh .

µcB
33

AEE : 26 -

J
s

' ' :{ E , AE , B , DC }
it 15 lb 17 O.ly A pAz# o

- - B : 't

µ E
AEE : 26 ,

d 0
A Em D C
7 8

AE : IT 0 8 9

\ E

A E
7 8

4¥.¥E&Hf EFFIE: #att -44549475A

SI { A , B , C , D , E , E}

f-
DCB AEF

: tq

3g (ga , , , , , .
°

- n
* aAE# o

- DC
B : 16 F

A art "

I 0
A E

D C
7 8

8 q d

¥⇒E# Ascii code
Frequency code length Frequency code length

A 7 ill 21 A 7 Ooo 21

B 16 01 32 B 16 cool 48

C 9 001 27 C g 010 27

D
8 oof 24 D

f
011 24

-
-

t 8 no 24 t f too 24

F 11 10 22 F it
lol 33

is lenis) is lenis)

Ew. bits =
I Freauency * A coded

Ew. bits =
I Frequency * a code A

i=0 i=0

I . Ee bits = 150 bits i . Ee. bits = in bits

*¥11 dearth of a node equals to the number of bits in its bit representation

Roof :
Base case : when n -

- o (IETF IT)
,
do nothing

Assumption : Assume that for n: x (tax'T Ef) , algorithm finds the optimal solution (yes k)

Proof CK-11) : SI { Xi , Xs
, Xs - - - '

. Xx
,
Xkt ,}

Algorithm finds { ai , as
, Az ,

- - - - UK
, Akt , }

optimal solution { O ' s 02
, 03 , - - - - Ok , 0kt , }

1¥#FEI :FiafH¥tE , t.IE frequency TAGG , FSTH. x. ix.
'ETI tree ↳GIE, 'THE,

2-: Death Cx) = length for representation of y

i . Assume a , I 0,

EH 14 A ,
701

-

-

' This is a prefix code
, ¥ o # .si/iEIzFeOi (where i > t) # tree ↳GIFT 'THE,

¥kfL¥O*
,
such that 0 , #A Oi FETE'¥I ⇒ { Oi , Oz , Os

,
- - - .

Or
,

- - . Ok
, 0kt ,}

total co't) - total co) = (X , .
-frequency * Dil - X . . frequency * Ion l) t (x : . -frequency * foil - Xi - frequency * 1011)

I X , . frequency * (oil - X , .
-frequency * 1011 t Xi . -frequency * toil - Xi - frequency * loin

= Xi . -frequency # (toil - 1011) t Xi - frequency (toil - loll) 70

toil > 1011 A # Hafiz Xi Fitz'THE,

-

'

. t.EE#EEIiEkafiIEaTEE . .
.

'

.
A , is part of an optimal solution

Huffman code

{hoof :
Base case : when n -

- A C -TIFF) , I bit ft'¥u

Assumption : Assume that for n: x (tax'T Ef) , algorithm finds the optimal solution (y L = K)

Proof CK-11) : SI { Xi , Xs
, Xs - - - '

. Xx
,
Xkt ,}

Algorithm finds { Ai , as
, as ,

- - - a UK
, Akt , }

optimal solution { O ' s 02
, 03 , - - - - Ok , 0kt , }

1¥'t :FiafH¥tE , t.IE frequency TAGG , FSTH. x. ix.
'ETI tree ↳GII, 'THE,

2-: Death Cx) = length for representation of y

i . Assume a , F O,

EH 12, a , 7 01

-

-

' This is a prefix code
, ¥ o # , sit'¥FzF± Oi (where i > t) ¥ tree ↳f¥I FEE,

¥kfL¥ O
#

,
such that 0 , ¥07 Oi t¥tE¥± #i. , Oz , Os

,
- - - .

Or
,

- - . Ok
, 0kt ,}

total Cott) - total co) = (X , .
-frequency * Dil - ft. frequency * to a /) t (x : . -frequency * Dial - Xi - frequency * (oil)
- -

-

I X , . frequency * (oil - X , .
-frequency * lol I t Xi . -frequency * toil - Xi - frequency * loin

= Xi . -frequency * (toil - toil) t Xi - frequency (toil - loll) 70

toil > 1011 At # Hafiz Xi Fitz'THE,

-

'

. t.EE#EEziEitafiIEaTEE. .
.

'

.
A , is part of an optimal solution

¥ fifth # Eff&GA§I¥¥IIaA as is part of the optimal solution

i . x. , xs FAT frequency HEGG # Et - FEATHER → Reduced problem of K -2

¥1.#Itt VIE , By Hypothesis , Fos k a Ef , algorithm finds optimal solution , by adding X.
,
be in ie

,
both O

and A will eat them in the same level
,
which means that IAI = lol

,
A is the optimal solution

Xi . frequency * toil
- X , :fveguerY * 1011) f ti . -frequency * 10.1 - X : . frequency * toil

t

= X , .
-frequency * ((all - foil) t Xi - fueeuency * (10,1 - Mai MH)

-

-

Huffman code

{hoof :
Base case : when n -

- A C -TIFF) , I bit H'¥

Assumption : Assume that for n: x (tax'T Ef) , algorithm finds the optimal solution (y Lik)

Proof CK-11) : SI { Xi , Xs
, Xs - - - '

. Xx
,
Xkt ,}

Algorithm finds { ai , as
, as ,

- - - a UK
, Akt , }

optimal solution { O ' s 02
, 03 , - - - - Ok , 0kt , }

1¥# ifeng.tt#tE , x. , xzI¥ frequency lowest , therefore those two will be put in the level with the largest depth it the

tree

- : delete (node) is the length of bit representation of the node

Sumo se ai f as I 0, I 02

c

'

.
death Cai) ,

death case , are aluveady two akhabee with largest death

I
.

O , , Oz has length smaller than a . , as

a

'

.

It's a prefix code

There exist Oi
,
O; where i > I , j > I will be placed in the deedese of the three in

optimal solution

construct 0¥ such that { Oi , Oj , Os , 04 - - - . - Oi , Oz - - " } # Swag Oi , O, in the tree

total
-
value (o*) - total

-

Value co)

= it * k Xi . -frequency) t 10 ; I * (Xi -
frequency) as (10,1 * (Xi - frequency) t 1021 * (Xi - frequency))

= (oil * Cx . -
heavenly) t (Oji * (x , - frequency) - lo , I * Cxi . -frequency , - 102$ * (Xi - frequency,

= (x , .
-frequency) (toil -110,1) - Xi

- frequency (lo , I t 1024)

34 tht) t 53 t 61
-
--71
34
°"lX83 53×75) µ , ga g

43
0

¥ fifth # Eff&GA'FIE, #III. A- as is part of the optimal solution

i . x. , x , FAT frequency HEGG # Et - FEATHER → Reduced problem of K -2

FI
. .
#Itth , By Hypothesis , Fos K T Ef , algorithm finds optimal solution , by adding X.

,
be in ie

,
both O

and A will eat them in the same level
,
which means that IAI = lol

,
A is the optimal solution

Holden : ¥H¥tI
① Can you convert the recursive greedy algorithm Road Trip to an iterative algorithm ?

② Textbook 3422
,
Exercise 16 . I -2

③ Text book 3422
,
Exercise 16

. I -3

④ Design and prove a greedy algorithm for coin change when use American coins

⑤ Make example and show that greedy strategy does not hold for the 0/1 knapsack Holden ?

⑥ Write the kendo code and imlement the Huffman coding greedy algorithm

¥s¥ip

232 ×
2
" X
Z

=

→

16.1 - 2 :

This is a greedy algorithm because algorithm
always looks for best solution (the last activity
to start) currently .

Base case : Only one activity ,
choose 1

Induction Hypothesis : Algorithm finds the retinal

solution for us k activities

Ktl : Sullose algorithm finds

{ ai , are , - - - 9k
, ake ,} optimal solution is

{ o , ,
Oz

,

e - - - Ok
, 0kt ,}

Sumose ai Foi ,
based on the design of

algorithm , a , is the last activity to start ,
there

for start time for 0 , is earlier than 91

0 , and Oz is comeactable because O, stare

after Oz finish , so a .
and Oz is

computable .

Therefore, if we construct a
od

f-
Such that O*= { a , ,

Oz
, Os - - - Ok-113

16 - l - 3 (0*1=101 ,

→ 0¥ is optimal , a , is

based on duration of activity :12artofanoetimalsohetion.gl
- 4 (3)

I :-. : ¥,
" isk↳ algorithm : (4 - T)

optimal : (I - 4 , cu- D

T
based on overlies of fewest of other remaining

lo - 17

I - J¥:÷÷: "

no, {(f - I - 4 :/. Sore activities base on Start time

2 , i' O

3- kid

4. while i < ten (activity) : -

if there cxistpoomfk] . finish -time < = activity Ei] . Stare- time :

zut activity [it into Room Ely X→&oEG¥EF¥sRoom Ek] . finish. time = activity -47. finish -

time.1else :

K -1=1

Room [k] = new - room

{ut activity Li] into Room Ekg

Room Ek] . finish. time = activity -47. finish -

time.

CISC/CMPE-365*

Test #2

October 18, 2013

Student Number (Required) ______________________

Name (Optional)________________________________

This is a closed book test. You may not refer to any resources.

This is a 50 minute test.

Please write your answers in ink. Pencil answers will be marked, but will not be reconsidered

after the test papers have been returned.

The test will be marked out of 50.

Question 1 /25

Question 2 /20

Question 3 /5

TOTAL /50

The point is, ladies and gentleman, greed is good. Greed works, greed is right.
Greed clarifies, cuts through, and captures the essence of the evolutionary
spirit. Greed in all its forms, greed for life, money, love, knowledge has marked
the upward surge in mankind.

— Michael Douglas as Gordon Gekko,

Wall Street
(1987)

General Marking Instructions:

My general philosophy is that students should only fail a test if it is clear that

they made no effort at all to prepare for it. This sets the bar quite low for

passing. However, I believe that I set fairly difficult exams.

Please don't give 0 points for any question unless the student leaves the page

blank or writes something completely unrelated to the question. Even if what

they write is only marginally related to the proper answer, please give them 1

or 2 marks.

Students who show an understanding of the question should get at least 50%

on the question, even if they are unable to answer it.

If a student writes enough to show that they know what to do to answer the

question, even though they can't complete it, should get about 75% on the

question.

For example, suppose the question is “Show that problem X is NP-Complete.”

A student who answers, “I need to show that X is in NP, and I need to show

that all problems in NP reduce to X” or something similar should get about

50%

A student who answers, “I need to show that X is in NP, and I need to show

that instances of some known NP-Complete problem Y can be transformed in

polynomial time into instances of X, in an answer-preserving way.” or

something similar should get about 75%

A student who identifies an appropriate NP-Complete problem Y and has some

idea about the transformation should get about 80% ...

... and so on

Beyond that, take off a mark or two for significant errors or omissions. If a

student gives an answer that is completely correct except for a trivial error,

you can give full marks or take 0.5 off – it's up to you, as long as you are

consistent.

Question 1 (25 marks)

In Elbonia the only coins have value 1, 5 and 10 kronks. The inhabitants use the following

(obvious) greedy algorithm to choose coins to add up to a given target value:

Let k be the desired total value.

while k >= 10:

take a 10-kronk coin

k = k – 10

while k >= 5:

take a 5-kronk coin

k = k – 5

take k 1-kronk coins

Prove that this algorithm always uses the smallest number of coins to add up to any target

value of k >= 1.

Hint: Start by showing that it works for all k < 10, then use induction.

Hoof :
Base case : when 11h 25 : 02h'mal : Hh ,

which is exactly what the algorithm does

when g- z n 210 :

there are two solutions : I# n & J # A t Cn - T) # M (Algorithm does)

Therefore dearly Algorithm finds the optimal solution

-

'

. when nd lo , algorithm finds an optimal solution

Hypothesis : Foh lol n k k ,
algorithm finds the optimal solution

{roof ktl :
↳ For value of ktl , KH 710 , algorithm finds a lo ktonks

Assume that the optimal solution doesn't exist a lo Kronk

However ,
there are at most 4 d Kronk , p J Kronk ,

the total value is 9 which doesn't

satisfy the requirement . Therefore 10 kronks definitely exist in the oetimal solution
b the value reduce to ktl - lo = K- g

-

-

' k - q 2K
, By Hypothesis , Algorithm finds the optimal solution for nkk

-

'

. Algorithm finds optimal for Ck- a)
when we add (K- 9 , by lo

,
total number of coin will only be increased by one

I . A is the optimal solution

(Blank page if needed for answering Question 1)

Solution: Consider n <= 4. The only solution is to take n 1-kronk coins, which is what the algorithm

does. Consider 5 <= n < 10. The only possible solutions are A={n 1-kronk coins} and B={1 5-kronk +

n-5 1-kronk coins}. Clearly B is better (n-4 < n), and this is what the algorithm does.

IA: Suppose the algorithm finds an optimal solution whenever the target value is < n, for some n >=

10.

Let the target value be n. The algorithm starts by taking 1 10-kronk coin. We will prove that there is

an optimal solution that contains at least 1 10-kronk coin. Let O be an optimal solution for n, such

that O does not contain any 10-kronk coins. If O contains 5 or more 1-kronk coins O cannot be

optimal, since 5 of these can be replaced by 1 5-k. coin. If O contains 2 or more 5-k coins) cannot be

optimal since 2 of these can be replaced by 1 10-k coin. Thus O contains at most 1 5-k and 4 1-k coins.

But then n < 10, which is a contradiction. Thus O contains at least 1 10-k coin, so the algorithm's first

choice is correct.

After the first choice is made, the target value is reduced to < n. By the IA, the algorithm finds an

optimal solution to the reduced problem. Applying the standard argument, let O be an optimal

solution that starts with a 10-k coin. The rest of O solves exactly the same reduced problem as the

reduced problem the algorithm solves optimally. This part of O must have exactly the same size as this

part of the algorithm's solution, so the size of the algorithm's complete solution equals the size of O.

Therefore the algorithm's solution is optimal when the target is n.

Therefore the algorithm's solutions is optimal for all n.

Other proofs are possible and acceptable.

Students often have great difficulty giving correct proofs. Please be kind :)

Question 2 (20 Marks)

Suppose we have n concrete blocks, each with a certain thickness (i.e. block i has thickness ti).

We need to stack the blocks into a single stack. Clearly the total height of the stack will be the

same no matter what order we stack the blocks. However, the sum of the elevation above the

ground of the tops of the blocks will depend on the order in which we stack the blocks.

Example: if there are only two blocks, with thickness 2 and 4, then stacking the 2 on top of the

4 will give a sum of elevations of 4 + 6 = 10, but stacking the 4 on top of the 2 will give a sum

of elevations of 2 + 6 = 8.

2 4

4

2

(a) (5 marks) Create a Greedy Algorithm to find the order in which the blocks should be

stacked to minimize the average height of the tops of the blocks.

Solution:

Sort the blocks into order of non-decreasing height (that is, smallest first, largest last).

Stack the blocks in this order.

-

-

Fi

z -16 f- It

-

-

=

-

Min " (stone all the blocks by ti with increasing order

2- stair = null

÷÷i÷::÷÷÷÷
6- stair = TEI]

7- it -1

(b) (15 marks) Prove that your algorithm is correct.

Solution:

Observe that the set of possible solution values is non-empty and finite, and must have a minimum

element, so an optimal solution does exist.

An inductive proof similar to Question 1 is perfectly acceptable.

OR a proof along these lines:

Let the blocks be b1 <= b2 <= b3 <= ... <= bn

The algorithm's solution is to stack them in this order – call this order A

Choose O from the set of optimal solutions such that O has the greatest agreement with A, starting

from the beginning.

Suppose that O differs from A. Let i be the position of the first difference. That is

A = b1, b2,b(i-1), bi, ... bn

O = b1, b2, ... b(i-1), x,, bi, ... where x != bi (note that bi must be after x in O,

and x >= bi)

Let O' = b1, b2, ... b(i-1), bi,, x, ... (ie exchange x and bi in O)

Note that the elevation of each of b1, ... b(i-1) does not change

Note that the elevation of each block on top of x in O' does not change

Note that the elevation of x is now the same as the elevation of bi in O

Note that the elevation of bi is now <= the elevation of x in O

Note that the elevation of each block between bi and x in O' is <= its elevation in O

Thus the sum of elevations in O' is <= the sum of elevations in O. Thus O' is optimal, and it has

greater agreement with A than O did. Contradiction.

Therefore O does not differ from A – ie A is optimal.

Proof :
Base case : For n=o (O blocks)

,
algorithm stack nothing

Hypothesis : for n 2= K , Min stack CT) finds optimal solution

Htt : For T of ten (Kt ') = {Xi , xz.dz , dk , Ike]

Min Stack CT) = {ai , as , Az - -
- - UK

,
Ake , }

Optimal solution = { 0 , ,
02

, 03 -
- - -

, Ok , 0kt , }

Algorithm always finds the least thickness block as the first one

-

'

.
Assume a , to ,

,
O , is thicker than a ,

I , The position of a , exist at some other point Oi where i > A

Construct 0 # such that 0¥ = { a .
.

, Oz , Oz - - - - Or ,
- . . Ok

,
0kt 'S # Swap the position for O , and

Oi

Evaluation (o) - Evaluation Cott) = Op t Col -102) t (Oct 02-103 , t -
- . - t (O , t Oz toast . . . 0kt,)

e- (ai f- Ca, -102) t (alt Ose Oz) t - - - - -
- t la , +02+03 t - - - 0kt ,))

=k i - ai) > O '

.

'

O , is thicker than a
,

I . We can construct a better solution O# such that a , is at first position

.

'

.
A , is part of an optimal solution

By Induction Hypothesis : Algorithm finds the optimal solution
,
consider a reduced

problem that we only have {az.az - - - - axe ,] block , in this case
,

A- = 0

I
. Both optimal solution and

CISC/CMPE-365*

Test #2

October 17, 2014

Solutions and Marking Guide

This is a closed book test. You may not refer to any resources.

This is a 50 minute test.

Please write your answers in ink. Pencil answers will be marked, but will not be

re-marked under any circumstances.

The test will be marked out of 50.

Question 1 /20

Question 2 /10

Question 3 /20

TOTAL /50

“Do the unexpected.”

Happy Birthday to Rick Mercer

General marking philosophy: a student who gives enough of an answer to

show they understood what they were supposed to do, even if they couldn't

do it (or made lots of errors while doing it) should get at least 50% on that

question.

Full marks should be given if a solution is sound and not missing anything

important.

Feel free to give marks like 9.5/10 to a solution that is correct but contains a

minor error.

Students may come up with solutions that are completely diHerent from

mine but still completely correct. Correct solutions should get full marks

even if they don't match mine.

Students should always get a few marks for trying a question. The only way

to get a 0 is to leave the page blank or write something completely irrelevant.

QUESTION 1 (20 Marks)

Suppose Merge(List1, List2) is a built-in function that takes two sorted lists and

returns a new sorted list that combines the two original lists.

Merge(List1, List2) executes n copy operations, where n is the sum of the lengths

of the two lists being merged.

You have been given k sorted lists L1, L2, … Lk. L1 has length n1, L2 has length

n2, etc.

Your task is to use repeated calls to Merge() to create a single list that combines

all the original lists.

For example, suppose there are three lists L1, L2, and L3, with n1 = 7, n2 = 4,

n3 = 5. You could merge L1 with L2 (requiring 11 operations), then merge that

combined list with L3, (requiring 16 operations), for a total of 27 operations.

Alternatively you could merge L2 with L3 (9 operations), then merge that

combined list with L1 (16 operations), for a total of only 25 operations.

a) [10 marks] Create a Greedy Algorithm to merge the k lists using the fewest

possible copy operations. Express your algorithm in clear pseudo-code.

A simple version of the solution looks like this:

while k > 1:

let l_1 and l_2 be the two smallest lists

l_1 = merge(l_1, l_2)

remove l_2 from the set of lists

k -= 1

There are many other ways to describe the process, but the key idea is to

always merge the two smallest lists.

IX. BEEF'EIIEI⇒ # solution
I

¥ optimal solution

1 . Sort those lists by their length in increasing order

2 . i -- O

3 . Start = null

4 . while is K :

State = (start , T Ei])

i -4

Proof:
Base case : n

-

- O ,
then algorithm return null array

Induction Hypothesis : Eos n z k ,
algorithm finds the optimal solutions

ktl :

suppose algorithm produce : { Ai , Az
, as , - . . - Ak

,
Arti}

Ofcimal solution : {o , ,
Oz

, 03 ,
- - - - Ok

,
0kt I}

Sumose A f- O
,
the first difference is at position i

← Swag the emo position
↳ A'- {ai

, az , a} ,
- -

- Ai -I , ai , X ,
- - - Ak

, akti}
I { Ac , Az , Az , .

. . -
Ai - I , I , Ai ,

- -
- Ak

, Akti}

Note that Every seed above × are the same in A
Every steps count below and included ai - I are the same

Base on algorithm ,
ai has length smaller than X

i
.
All steps between each list in ai to X is smaller than × to ai in 0

i. total - step CA) L total
- step (O) (O is not optimal)

i
. There doesn't exist any difference

I
. A is the oztimal solution

Any algorithm based on this idea should get most of the available marks.

Some students may decide to sort the entire set of lists in each iteration. This

is unnecessary and should cost a couple of marks. Another predictable error is

to start by sorting the lists by length, but then merge all the original lists in

pairs without including the merged lists until all the original lists have been

merged at least once. That's a bigger error since it can easily result in a non-

optimal merge order.

An answer that employs the greedy principle but is based on an incorrect sort

criterion (for example, sorting the lists in descending size order) should get at

least 5 out of 10, just for understanding the principle.

b) [10 marks] Outline the structure of a proof of correctness for your algorithm,

describing what you would do at each stage of the proof. You are not required to

cll in the details of the proof (but feel free to do so if you wish!)

My solution would look something like this:

1. Prove that the algorithm Snds a solution to the problem. I would argue that

the algorithm repeatedly merges lists until only one list remains.

2. Prove that the algorithm's solution is optimal, using proof by induction:

2a. Establish a base case. I would argue that when there are <= 2 Sles,

there is only one solution and the algorithm Snds it

2b. Inductive Hypothesis: assume the algorithm Snds an optimal

solution when there are < n lists, for some n

2c. Prove that the algorithm's Srst decision (ie which Sles to merge Srst)

is part of an optimal solution. I would argue that if the smallest

lists are not merged Srst, the number of operations will not be

increased if we change the merge order to make this merge Srst.

2d. Prove that the algorithm's solution is optimal. I would argue that

the inductive Hypothesis guarantees that the rest of the

algorithm's solution is optimal, and that this combines with the

optimality of the Srst decision to give an optimal solution to the

whole problem.

Marking:

Step 1 is worth 1 mark. We often gloss over this, but it is actually important

that when we talk about “the algorithm's solution” in Step 2, we are talking

about a real thing.

-

E

•

Assuming the student uses an inductive proof, marks should be allocated as

2a. 1 mark

2b. 2 marks

2c. 3 marks – this is the most di\cult step of this proof. Students can

be quite vague about what they would actually do in this step,

and that's ok

2d. 3 marks – again, this is probably going to be di\cult. If they

remember to refer to the Inductive Hypothesis, they should get

the marks.

Students may use non-inductive proof techniques as well. For example, they

may adapt the technique used for Kruskal's Algorithm. The merging of lists is

conceptually similar to the joining of subtrees by selecting edges of least

weight. This type of proof would look something like:

1. DeSne a “safe” sequence of merges to be a sequence that can be extended

to an optimal solution.

2. Show that the Srst set of merges (ie. the empty set) is safe.

3. Show that for each iteration, if the set of merges made so far is safe then

making the algorithm's next selected merge results in a larger safe set of

merges. This is a more complex argument than the inductive one, but they

don't have to give the details. As a proof structure, it is completely acceptable.

The goal of this question is to show an understanding of what a valid proof of

optimality looks like, without requiring all the details to be Slled in.

QUESTION 2 (10 marks)

Professor Snope's arch-rival Doctor Phibes proposes the following Greedy

Algorithm for the Max Independent Set problem (recall: this problem asks for the

largest possible set of vertices in a graph G such that none of them are joined by

any edges):

1. Sort the vertices of G into ascending degree order (ie, vertices of lowest degree

are at the beginning of the sorted list)

2. Let S ={}

3. For each vertex v in the sorted list:

if S + {v} is an independent set:

add v to S

a) [5 marks] Assuming that the graph G is represented by a set of adjacency lists,

and that set membership can be tested in constant time, what is the complexity of

Phibes' algorithm? Explain your answer.

If the degrees are not given, we can determine all vertex degrees in O(n^2)

time. We can sort the vertices by degree in O(n*log n) time. The loop iterates

n times, and each iteration takes O(n) time, which gives O(n^2) time for the

loop. Thus the algorithm runs in O(n^2) time.

Marking: It's ok if they assume the vertex degrees are given. 2 marks should

be allocated to giving the sort complexity as O(n*log n), and 3 marks should go

to recognizing that the loop is O(n^2). It is also correct to say that the loop

executes in O(m) time, where m is the number of edges in the graph.

b) [5 marks] Do you believe that Phibes' algorithm always cnds a maximum

independent set? Explain your answer.

No. The algorithm runs in O(n^2) time, and Max Independent Set is a known

NP-Complete problem (technically it is NP-Hard, but we have not made that

distinction in this course). If Phibes' algorithm always Snds a max

-

suppose the degree of each vertices

↳ sort the vertices by their degree in decreasing order takes OCnl%D

↳ For each vertex takes n{
determine if stfu} is an indesendent see Eckes n

↳ oui)
-

'

.
The complexity is Ocu)

(b)

independent set, then P = NP. Since this is almost certainly not true, I don't

believe that the algorithm always Snds a maximum independent set.

QUESTION 3 (20 marks)

You have n cases of maple syrup to sell to n customers. Let s
i
 be the number of

litres of syrup in case i. Let pj be the price per litre that customer j will pay.

You can sell one case to each customer.

Example: suppose you have 2 cases containing 10 and 20 litres each, and 2

customers who will pay $5 per litre and $6 per litre.

If you sell the 10 litre case to Customer 1 and the 20 litre case to Customer 2, your

income is 10*5 + 20*6 = 170.

However, if you sell the 10 litre case to Customer 2 and the 20 litre case to

Customer 1, your income is only 10*6 + 20*5 = 160. Clearly the crst solution gives

you a larger income.

a) [10 marks] Create a Greedy Algorithm that will match cases with customers

so that your total income is maximized. Express your algorithm in clear pseudo-

code.

A useful fact: if s
1
 > s

2
 > 0 and p

1
 > p

2
 > 0, then

 s
1
*p

1
 + s

2
*p

2
 > s

1
*p

2
 + s

2
*p

1

The basic principle is to sell the largest case of syrup to the customer who will

pay the most per litre. The algorithm is:

1. Sort the cases of syrup into descending order by size.

2. Sort the customers into descending order by price they will pay.

3. For i = 1 .. n:

sell case i to customer i

① Sore the customers by their price in decreasing order

② Sort the cases by litres in decreasing
⑤ i -- O

④ income IO

⑤ while i L num - Customers :

income t= Sell case [i] to Customer [i]

iet

(b) first decision made is correct

Suppose algorithm sell cases to A = { Ci , Cz , Cs - - . . Ck }

optimal solution sell cases to O = { o , ,
Oz

, 03 - - - . Ok}

Suppose C , f- O ,

customer who laid most exist in Oi where I > A (Oi = Cc)

construct 0¥ = { Ci , Oz , Oz Oi
,

. . . . Ok } Buap C ,
and Od

total - Value (0*1 - total - value (o) = (C , # Case -4] - O , * case Ec]) t (O , * Case [i] - C. * case Ei])

= Case -4] (cc - 011 t case [i] (o , - C .)

↳
= case -4] Cci - Oi) - case [i] (Ci - Oi)

= (Ci - Oi) (case -4] - case [i]) > O
un

t t

Cc - O , > 0 case -43 - case [it 70

.

'

.

o* is a better solution

-
- -

Marking: as usual, if they show they understand what a greedy algorithm is

(sort followed by selection) they should get at least 50%

b) [10 marks] Prove that the crst decision made by your algorithm is correct.

The Srst decision the algorithm makes is to match the maximum s with the

maximum p. Let these values be sm and pm.

Let O be any optimal solution, and let sm be matched with px in O and let pm

be matched with sy in O. If px = pm, then we can “swap” px and pm without

ahecting the total value. This gives a new optimal solution that matches the

algorithm's Srst choice and we are done.

Similarly, if sy = sm, we can swap sy and sm without reducing the value,

giving a new optimal solution that matches the algorithm's Srst choice.

The remaining possibility is that px != pm and sx != pm. Since sm and pm are

the maxima in their respective sets, we know px < pm and sx < pm.

Applying the useful fact, we see that sm*pm + sy*px > sm*px + sy*pm, so

“swapping” px and pm in O would increase the value … but that isn't possible

because O is optimal. Thus it must be the case that px = pm or sy = sm and we

can modify O to match the algorithm's Srst decision without ahecting the

value.

Marking: This is the most di\cult question on the test – marking can be quite

generous. If they show that they understand the concept of taking an optimal

solution and showing that it either contains the algorithm's Srst choice or, if it

doesn't, it can be modiSed into another optimal solution that does match the

algorithm's Srst choice, they should get most of the marks for this question.

¥2

CISC/CMPE-365*

Test #2

October 22, 2015

Student Number (Required) ______________________

Name (Optional)________________________________

This is a closed book test. You may not refer to any resources.

This is a 50 minute test.

Please write your answers in ink. Pencil answers will be marked, but will not be reconsidered

after the test papers have been returned.

The test will be marked out of 50.

Question 1 /30

Question 2 /20

TOTAL /50

The point is, ladies and gentleman, greed is good. Greed works, greed is right.
Greed clari7es, cuts through, and captures the essence of the evolutionary
spirit. Greed in all its forms, greed for life, money, love, knowledge has marked
the upward surge in mankind.

— Michael Douglas as Gordon Gekko,

Wall Street
(1987)

General marking philosophy: a student who gives enough of an answer to

show they understood what they were supposed to do, even if they couldn't do

it (or made lots of errors while doing it) should get at least 50% on that

question.

Full marks should be given if a solution is sound and not missing anything

important.

Feel free to give marks like 14.5/15 to a solution that is correct but contains a

minor error.

A student should only get 0 on a question if they made no aHempt to answer it

at all.

Question 1 (30 Marks)

You have won the contract to install Wi-Fi nodes along a very straight and sparsely populated

stretch of road which runs due east and west across the tiny nation of Occiput. There are N

houses along the road – each house is identiWed by its distance from the east end of the road.

Each house is located right on the road, not set back from the road. Your assignment is to

install Wi-Fi nodes along the road so that each house is no more than 1 kilometre from a

node. You can install nodes anywhere along the road – the nodes do not have to be located at

houses. You want to install as few nodes as possible.

This Wgure illustrates an instance of the problem and one possible solution. The black dots

represent houses, the white dots represent Wi-Fi nodes, and the grey bars show the “1 km in

each direction” range of each Wi-Fi node. The solution shown is not optimal.

a) (10 marks) Give a Greedy Algorithm to Wnd an optimal (minimal) set of locations for the

Wi-Fi nodes. (Hint: consider the west-most house – how far east of that house can you place

the Wrst node?)

sort the houses in west-to-east order

while at least one house is not covered:

let x be the west-most uncovered house

place a Wi-Fi node exactly 1 km east of house x

or equivalently:

sort the houses in west-to-east order

for h in the sorted list of houses:

if h is not covered by a previously placed Wi-Fi node:

place a Wi-Fi node exactly 1 km east of h

Marking: the algorithm can be run from east-to-west without aDecting its correctness.

Deduct 1 mark if the student forgets to sort the houses.

For algorithms that are greedy but do not Hnd an optimal solution (for example, “place the

Hrst node where it can cover the most houses”) give about 7 marks. For algorithms that

aren't really greedy (for example “place a Wi-Fi node right on every house”) give about 5

I . Sort the houses by their distance to east in decreasing

2 , while house- cover 1. = o :

3. place the wifi at 1km east to the house

4 . U3date house - cover

Cb) Suazose Algorithm finds wifi : { ai , as , as - . . - Ak }{optimal solution is '
- { o , , Oz , Os - - - - Ok }

Suazose ai F O ,

by the design of the algorithm , a . will be 1km east of the
west most house , therefore the distance between the wesehiiose house

and O, has to be less than 1km C or else vest motel house will be ignored,
i . A , is closer to 02

,
which means a , can cover every house between

O , and 02

I
. Replace Qi into the 03 -Umal Solution = {a .

,
Oz
, Oz Ok } is a feasible solution

note that 10*1 = lol
Therefore a , is part of an optimal solution

(c) Base case : For one house
,
algorithm rue only one wifi

Induction Hypothesis : For n 2K houses , algorithm finds the best solution

K -11 : Prove a , is here of an optimal
consider a reduced problem that westmore house is eliminated , we only need

to consider k house
. By IH : algorithm finds the optimal

Therefore , by adding one house to the reduced problem
,
only one wifi route

will be added IAIN -_ lol -11 ⇒ A is optimal

marks. For algorithms that do not Hnd a feasible solution, give about 4 marks.

b) (10 marks) Prove that the Wrst choice your algorithm makes for a node location is correct

(i.e. that there is an optimal solution that contains this location as its Wrst location).

The algorithm's Arst choice is to place a node 1 km east of the west-most house. Call this location a1.

Let O be an optimal solution, and let o1 be the west-most node in O. o1 cannot be east of a1, since then

the west-most house would not be covered by any node in O. Thus either o1 = a1, or o1 is west of a1.

If o1 = a1 then a1 is contained in an optimal solution. If o1 is west of a1, then a node at a1 will cover

all the houses that a node at o1 covers. Thus we can remove o1 from O and replace it with a1. This

gives a feasible solution with the same cardinality as O, ie an optimal solution that contains a1.

Thus there is an optimal solution that contains a1.

Marking: The key idea here is that the algorithm's Hrst choice can be substituted into any

optimal solution that doesn't already contain it. If the student has that idea, they should

get at least 6 marks, even if they couldn't come up with a proof.

c) (10 marks) Complete the proof that your algorithm Wnds an optimal solution.

Clearly if there is only 1 house, any optimal solution contains one node. The algorithm Ands an

optimal solution in this base case.

Assume the algorithm Ands an optimal solution when there are <= n houses.

Suppose there are n+1 houses. Let A = {a1, a2, … as} be the algorithm's solution, and let O = {a1, o2,

o3, …, ot} be an optimal solution, in west-to-east order, containing a1 (we know that such a solution

exists). We need to show |A| = |O|

By our inductive assumption, {a2, …, as} is an optimal solution to the problem of covering all the

houses not covered by a1. But this is exactly the same problem that is solved by {02, …, ot}. Therefore

|{a2 …. as}| <= |{o2 …. ot}|. Therefore |A| <= |O|. |A| < |O| is impossible since O is optimal.

Therefore |A| = |O|, so A is optimal too.

Marking part c): Induction is a very natural way to prove this. The base case is worth 3

marks, and the inductive part is worth 7. If they have the basic idea of induction but don't

give a sound proof, they should still get at least 6 marks.

An alternative, non-inductive proof might look like this:

Let A = {a1, a2, …., as} be the algorithm's solution, and let O = {o1, o2, …., ot} be an optimal

solution. Using the argument already given, we can see that O' = {a1, o2, …., ot} is also an

optimal solution. Now we can make a similar argument that a2 can be used to replace o2,

giving O'' = {a1, a2, o3, …., ot} is a feasible solution with the same cardinality as O, so O'' is

also optimal. Repeating this argument, we replace all the o's with a's, always maintaining

optimality. We end up with A being optimal.

Question 2 (20 Marks)

You have landed a prestigious new job, hiring guards for the National Prison for Disgraced

Politicians (a very crowded place). The prisoners must be guarded from 6 AM to 6 PM.

There are a total of n guards, but each guard is only available for a speciWc time period during

the day: Guard Gi will work during the interval [si, fi], where 0 <= si < fi <= 24. Each guard is

payed the same amount, regardless of how long their shift is. Since you are paying them out

of your own salary, your goal is to hire as few guards as possible.

You may assume that there is a feasible solution – there are enough guards to cover the whole

day.

(a) (10 marks) Give a Greedy Algorithm to Wnd an optimal solution (i.e. minimal number of

guards) subject to the constraint that there must be at least one guard on duty at all times

between 6 AM and 6 PM. The total time period covered may start before 6 AM and may end

after 6 PM.

In pseudo-code:

Sort the guards by their start times (earliest Arst)

Time_covered = S-1

index = 1

while Time_covered < F:

best_guard = nil

best_guard_end = 0

while sindex <= Time_Covered + 1:

if findex > best_guard_end:

best_guard = index

best_guard_end = findex

index ++

hire guard Gbest_guard # ie add Gbest_guard to the solution

Time_covered = best_guard_end

in English:

 Sort the guards by their start times (earliest Arst).

 From the guards that cover S, choose the one with the latest Anish time. Continue with that time + 1

as the new start time.

(a) 1. Sort the guards base on (fi - Sit in decreasing order

2 , time -- 6AM

3 . while time 2 62M :

4. For i in ten (guard) :

T. if guard-43.5 : ⇐ time : Xb , break;
7 . itt

8 . remove guard
-

Li] from guard - list
9 . schedule guard Ei] to work

(or time = guard [i] . fi
Etf Cfi - si) #ftp.fgftuIEI#IifBe& : what if si = 3AM , fi -- 6AM X

↳ (a) 1. Sort the guards base on fi in decreasing order

2 , time -- 6AM

3 . while time 2 62M :

4. For i in ten (guard) :

T. if guard -Li] . S : ⇐ time :

6

7. break;
itt

fi
q , remove guard

-

Li] from guard - list

(o ,
schedule guard Ei] to work

1 (t time = guard [i] . f ;
ftt Taft'IEi¥# if : what if si - 3AM , fi -- 6AM

We never have to go back and look at a guard twice because we only reject a guard if we have found a

be]er one (ie one who covers the same required start time and whose end-time is later).

Marking: Similar to Question 1 (a). The algorithm can be presented descriptively or in

code or pseudo-code.

Students are not required to give any justiHcation for their algorithm. I included the

“never have to go back” comment for the beneHt of the reader.

Note: students may have interpreted the question to mean that when guards relieve each

other, they must overlap (eg if the Hrst guard ends her shift at time x, then the second must

start no later than time x-1). This is a reasonable interpretation and should not be

penalized. It doesn't aDect the structure of the algorithm, just the criterion for deciding if a

guard can feasibly be added to the solution.

(b) (10 marks) Explain why your algorithm would not work if there is an added constraint

that each guard has a Wrst name (Kim, Pat, Kelly, etc) and you cannot hire two guards with

the same Wrst name.

Suppose there are two guards named Kim – call them Kim1 and Kim2. The algorithm's Arst choice

might be Kim1, and then on a later iteration, the best – or perhaps the only – choice might be Kim2. If

the algorithm chooses Kim2, it violates the constraint – if it doesn't choose Kim2, it may not And a

solution at all.

Thus we can construct an instance where the algorithm fails.

Marking: the key idea is that for a greedy algorithm to be successful, its choices should be

based on purely “local” information. It should not be the case that the optimal Hrst choice

needs to consider future optimal – or essential – choices.

Students can explain this clearly or give an example for full marks.

An alternative (and fully acceptable) demonstration of the failure would be to show that

proof by induction would not be possible. We can assume that the algorithm makes an

optimal Hrst choice and that it Hnds an optimal solution to the reduced problem after the

Hrst guard is chosen, but that does not guarantee that the algorithm's Hrst choice and the

optimal solution to the reduced problem can be combined – as described above, the

constraint on names might be violated.

Give part marks in the range 7 to 10 for answers that come close to giving a good

explanation or an example of how the algorithm could fail.

Give marks of 5 or less for answers that show some understanding but cannot identify (in

any clear way) how the algorithm might fail.

Bonus Question (0 marks):

What is the meaning of this Hgure?

CISC/CMPE-365*

Test #2

October 21, 2016

Student Number (Required) ______________________

Name (Optional)________________________________

This is a closed book test. You may not refer to any resources.

This is a 50 minute test.

Please write your answers in ink. Pencil answers will be marked, but will not be reconsidered

after the test papers have been returned.

The test will be marked out of 50.

Question 1 /12

Question 2 /25

Question 3 /12

Question 4 /1

TOTAL /50

General marking philosophy: a student who gives enough of an answer to show they understood what

they were supposed to do, even if they couldn't do it (or made lots of errors while doing it) should get at

least 50% on that question.

Full marks should be given if a solution is sound and not missing anything important.

Feel free to give marks like 9.5/10 to a solution that is correct but contains a minor error.

Students may come up with solutions that are completely diHerent from mine but still completely

correct. Correct solutions should get full marks even if they don't match mine.

Students should always get a few marks for trying a question. The only way

to get a 0 is to leave the page blank or write something completely irrelevant.

Question 1 (12 Marks)

(a) [6 marks] Show the bitstring codes that result from applying the HuVman

Coding algorithm to a string containing the following set of leWers with the

indicated frequencies:

a b c d e f g h

1 1 2 3 5 8 13 21

Solution: most students will probably draw the tree to explain how they get

the 7nal bitstrings. The tree will probably look something like this

a b c d e f g h

 \ / / / / / / /

 ab / / / / / /

 \ / / / / / /

 abc / / / / /

 \ / / / / /

 abcd / / / /

 \ / / / /

 abcde / / /

 \ / / /

 abcdef / /

 \ / /

 abcdefg /

 \ /

 abcdefgh

with the edges labeled “0” and “1” . It is not necessary to label the internal

vertices. If the “up and left” edges are “0” and the “up and right” edges are “1”

this gives

a: 0000000 b: 0000001 c: 000001 d: 00001 e: 0001 f: 001 g: 01 h: 1
-
-
-- - - .

a

¥
' #size ,

abcdefg 0€ !h : 21
Oabcde!!

o - 13

o/\o
abode : 12 if :p

:
o a@b↳d a : ooo ooo M

N b '

- O O O 0000

✓\ A
C : ooo OO M

ab : 2 c : 2 d : oooo d

N f : ood
g 'ol

p O
h : I

a b

(b) [3 marks] Is your answer in (a) unique? Why or why not?

No, it is not unique. Exchanging the “0” and “1” labels on any pair of edges

that both go “up” from a single vertex with give an equivalent code. It is also

true that swapping all “0” and “1” edge-labels will give an equivalent code.

(c) [3 marks] Generalize your answer from (a) to describe an optimal pre^x-

property code when the leWer frequencies are the ^rst n Fibonacci numbers.

The highest frequency leJer gets a bitstring of length 1. The second highest frequency leJer

gets a bitstring of length 2, and so on down to the last two leJers, which both get bitstrings

of length n-1. The bitstrings must obey the pre7x-property rule.

If a student does not know the de7nition of the Fibonacci sequence ...if they extrapolated

from part (a) in a plausible fashion and gave a decent answer, that’s ok

-

(b) No int 's not unique ,
EEk¥EEE¥at¥Ek¥g¥I - FIGG table

cc)

-

Question 2 (25 marks)

Suppose you have K dollars in your pocket, and you want to buy Hallowe’en

candies to give to trick-or-treaters. At the candy shop there are n small buckets

of diVerent types of candy. Each piece of candy is priced at $1, so you can only

buy a maximum of K pieces of candy. For each type of candy, you have a

satisfaction value that you experience from giving one piece of that candy to a

trick-or-treater.

(a) [10 marks] Suggest a Greedy Algorithm to maximize the total satisfaction

you will experience when you give away all the candy that you buy.

Sort the candies in descending order by their satisfaction value.

R = K

while R > 0 and there are still some candies left to buy:

buy a candy with the highest satisfaction value

R = R – 1

or

Sort the candies in descending order by their satisfaction value.

R = K

while R > 0 and there are still some candies left to buy:

buy as many candies as possible with the highest satisfaction value

R = R – the number of candies bought on the line above this one

-

-

ca) 1- Sort the types of candy by satisfaction value in decreasing order

2 , i :O

3 . while money so :

4 . buy as much aci] as you can

J - if no more aci] left : it -1

6 , deduct money

(b)

Suppose that algorithm finds { ai , az , as . .
- - Ak}

ofcimal solution { Oi , Oz , Oz - - - - 0kg

Assume algorithm 's first choice is not optimal
.

'

. A , I 01

Based on design of the algorithm, a . is definitely the candy with most satisfactory

value

I . O, is not the candy with most satisfactory value

let 0¥ be { a . ,
Oz

, Os ,
- - - - Ok} ,

this solution is feasible because

10*1=101 , no more moey cost

and total- Val (0*1 - total - Valeo) = (a .
- O ,) > o

'

. .
Ai is part of an optimal solution

(b) [5 marks] Prove that your algorithm’s ^rst choice is optimal (i.e. that there is

an optimal solution that makes the same choice)

Consider an optimal solution that does not include as many of the highest satisfaction value

candies as the Algorithm’s solution. Then we can replace some equal-or-lower value candies

in the optimal solution, without lowering its total value, using the left-over highest value

candies. Thus there is an optimal solution that matches the number of highest-value candies

in the Algorithm’s solution.

(c) [10 marks] Complete the proof that your algorithm ^nds an optimal solution

to the problem.

Continuing the argument above, we can start with an optimal solution that

matches the Algorithm’s choice with respect to the highest-value candy. Using

the same reasoning, we can 7nd an optimal solution that also matches the

Algorithm’s choice with respect to the second-highest-value candy, and so on.

Eventually we reach an optimal solution that is identical to the Algorithm’s

solution ... hence the Algorithm’s solution is optimal.

Proof by induction is also a reasonable approach.

Marking: students seem to have interpreted this problem in a variety of ways.

For example, some students assumed the buckets are sealed and you can’t

pick individual candies out. This obviously changes the answer, but they can

still come up with a greedy algorithm (although it won’t always give the

optimal solution because this interpretation makes the problem equivalent to

the 01 Knapsack Problem). Other students assumed that the small buckets

contain inSnite numbers of candies (?) … which also aVects the details of the

answer, but not its principle. If they give an answer that is correct relative to

their interpretation, that’s ok.

Cc)

suppose that algorithm finds { ai , az , as . .
- - Ak}

optimal solution { Oi , Oz , Oz - - - - 0kg

Assume algorithm 's first choice is not optimal
.

'

. A , I 01

Based on design of the algorithm, a . is definitely the candy with most satisfactory

value

I . O, is not the candy with most satisfactory value

let 0¥ be { a . ,
Oz

, Os ,
- - - - Ok} ,

this solution is feasible because

10*1=101 , no more moey cost

and total- Val (0*1 - total - Valeo) = (a .
- O ,) > o

'

. .
Ai is part of an optimal solution

C . Complete your poof
§ Base case : when only have I dollar , byuy the most satisfactory one

Hypothesis : Assume for n E KK
, algo finds the optimal solution

K -11 i Roof first solution is rare of an optimal solution

Guzzose the problem reduce to K dollar

IAI = lol
add one dollar

both algo will choose the most satisfactory like the optimal
solution

Question 3 (12 Marks)

Is Dijkstra’s Algorithm for ^nding least-weight paths in a graph with positive

edge-weights a Greedy Algorithm? Why or why not?

Case for Yes: on each iteration, the algorithm chooses the best option available

to it. It never looks forward to anticipate future choices or back to revisit

previous choices. This is the essence of the Greedy strategy.

Case for No: Greedy algorithms are supposed to start with a sort. Dijkstra’s

Algorithm does not start with a sort … so it is not a greedy algorithm

Marking: I’m willing to accept either “Yes” or “No” for this … but they have

to give a decent reason for their answer.

Question 4 (1 mark)

Consider the following Greedy Algorithm for CNF-SAT:

sort the boolean variables in the expression in descending order based on

how many terms they occur in

for each boolean variable, set it to True unless its negation has already

been set to True

True or false: If E is a satis^able expression in CNF form, this algorithm will

always ^nd a truth assignment that satis^es E

true FALSE

The correct answer is False

CMPE/CISC-365*

Test #2

October 22, 2019

Student Number (Required) ______________________

Name (Optional)________________________________

This is a closed book test. You may refer to one 8.5 x 11 data sheet.

This is a 50 minute test.

Please write your answers in ink. Pencil answers will be marked, but will not be

re-marked under any circumstances.

The test will be marked out of 50.

Question 1 /16

Question 2 /12

Question 3 /20

Question 4 /2

TOTAL /50

“There is a very Xne line between loving life and being greedy for it.”

― Maya Angelou

QUESTION 1 (16 Marks)

Suppose we have a computer which is based on the trinary system,

rather than binary. The fundamental unit of memory of such a

system is called a trit (instead of bit). We represent everything with

tritstrings consisting of 0’s, 1’s and 2’s. In such a system, the

standard representation of the le_er “A” might be “102210”, “B”

might be “102211” etc.

Part A : [8 Marks]

Adapt the Hubman Coding scheme to the trinary system, and give a

clear description of your modiXed algorithm for constructing variable

length trinary codes. You are not required to prove that your

algorithm produces optimal trinary codes.

Solution:

Sort the characters in the source document according to their frequency (same as

the original algorithm)

Build a trinary tree as follows:

choose the three characters with the lowest frequency, add a parent that has

their combined frequencies, and put a 0, a 1 and a 2 on the edges joining them to

their parent.

Remove the three characters from the set and add their parent (as a new

character) to the set.

Repeat until there is a single root that represents the combination of all the

characters.

Raze A :

sort the letters by their frequencies in increasing order

while lent letter- list j z c :

choose three least frequency letter and out them on the same level of tree
denote them as o , I , 2 respectively
assign a combined letter as their Talent

cut the combined letter back and remove these three letter
,
the frequency

of the combined letter is the sum of frequencies of these letters

Marking:

Sorting the set: 2 marks

Choosing the three smallest: 2 marks

Adding 0, 1, 2 to their codestrings: 2 marks

Replacing them by a combination

item with their summed frequencies: 2 marks

A student whose answer shows a good understanding of the basic

Hubman algorithm should get at least 4/8, even if they make errors in

translating it to the trinary version.

They are not required to present the algorithm in terms of building a

tree. They can describe the process as “add 0, 1, 2 respectively to the

codestrings for the characters represented by the three lowest

frequency items”

Part B : [8 marks]

Show the application of your modiXed algorithm to the following set

of le_ers, where each le_er is followed by its observed frequency.

Show the tree and codes that your algorithm constructs:

A 5

B 10

C 15

D 24

E 29

F 40

G 70

H 75

I 100

⇐ ÷:i÷÷g÷
"

Marking:

The assignment of 0,1 and 2 to the edges of the tree are arbitrary so

the codestrings they construct may be very diberent than mine, but

the lengths should be the same (“I” should have a codestring of

length 1, etc.)

It is important to correctly extract the codestrings from the tree (or

alternative representation). Some students may read the codestrings

from the bo_om up rather than from the top down, ge_ing (for

example) “100” for “B”. This breaks the preXx rule and makes the

code unusable.

Showing the steps of the execution: 3 marks

Showing the codestrings correctly: 5 marks

Showing the codestrings incorrectly

(see explanation above): 2 marks

QUESTION 2 (12 Marks)

Suppose we have a set of n activities, each with a known start time

and Xnish time . The activities may overlap. Our task is to assign

the activities to rooms so that each room contains a non-overlapping

subset of the activities. The goal is to use as few rooms as possible.

In this example we need two rooms: one room for A1 and A3 and the

other room for A2 and A4.

A greedy algorithm for this problem: sort the activities based on start

time, then assign activities to rooms. Use a new room only if the next

activity overlaps with activities in all existing rooms.

Sort the activities based on start time and renumber them so that

Room_set = {1}
Busy_until[1] = 0
for i = 1 to n:

if there is any room x in Room_set with Busy_until[x] :
assign Activity i to Room x
Busy_until[x] =

else:
add a new room to Room_set
assign Activity i to the new room
set Busy_until[new room] =

Question 2 continues on the next page.

Haggett 03
-lineal solution EtiBz 24¥

⇐
'ideait 'z. Stu. 'JEEZ :3 Ez IA I # FE 2 £9 # Ets - FEE -FIE

Suppose the Algorithm puts Activities into Room 1 and then

puts Activity into Room 2.

Prove that there is an optimal solution that does exactly the same

thing.

Hint: Let O be an optimal solution ...

Solution:

Let O be an optimal solution, and suppose it does something

diFerent with the Grst i+1 Activities. Renumber the rooms so that

Activity 1 is in Room 1. This does not change the number of rooms

so this renumbered solution is still optimal. Call it O’

Let Activity j+1 be the Grst Activity that O’ does not put in Room 1.

(That is, O’ puts Activity 1, 2, ..., j in Room 1.) If j = i, then

renumbering the room that contains Activity i+1 to be Room 2

exactly matches the algorithm’s action. If j i then it must be true

that j < i, since if j > i then the algorithm would not have put

Activity i+1 into Room 2.

Let the Room containing Activity j+1 be Room k. Swap Activity j+1

and all following activities in Room k with all activities in Room 1

that follow Activity j. Because the earliest activity being swapped

into Room k must have start time , this is a feasible solution,

and since it doesn’t use more rooms it is also optimal.

This new optimal solution agrees with the Algorithm’s solution

more than the previous one did. We can repeat this swapping action

until all of Activity 1, ... Activity i are in Room 1, and Activity i+1 is

in Room 2. This is exactly what the algorithm does.

Marking:

The main thing to look for here is whether the student understands

how to approach this type of problem. The details are less critical.

Recognizing that our goal is to take an arbitrary

optimal solution and manipulate it to create

another one that matches the algorithm’s choices: 4 marks

Recognizing that no optimal solution can put

Activities 1, 2, ..., i+1 into the same room: 4 marks

Recognizing that we can swap Activities (or groups

of Activities) between rooms without creating

time-conlicts: 4 marks

Please give part marks to answers that show

partial success with these aspects of the proof.

If a student takes a completely diberent approach and you are not

sure how to grade it, please contact me.

QUESTION 3 (20 marks)

Let be a set of n positive integers – possibly

containing duplicates. Let k be a positive integer.

Problem: Find a maximum-size subset A of S that has sum k

For example, let S = {7, 4, 12, 1, 3, 18, 1, 240, 10} and k = 19

The solution is A = {7, 4, 1, 3, 1} (in any order) which has size 5.

Part A : [6 marks]

Create a Greedy Algorithm to solve this problem. State your

algorithm in clear pseudo-code.

Solution:

Sort the values into ascending order, so

total = 0

i = 1

solution = {} # empty set

while total + <= k:

total = total +

i = i+1

solution.append() # or “add to the solution”

Sort the integer in increasing

order

R=E3
Sum

'

-
O

i = 0

while sunt SEI] I ki

sum te SEI]

R . amend (sci])

{roof : Base case : - - r

Induction Hypothesis : - - - -

Kyl i Algorithm : { Ui , as ,
a } , ay ,

- - - - }
optimal = { o , , 02

, Oz , Oy c - - - 3
A , is definitely the smallest one

Suazo se ai f Os
,
Oc is not the smallest

-

'
c ai L O ,

i . Suppose construct 0¥ that { Cec , 02 , 03 ,
- - -J

sum Co#) f KH because a ,
L 01

.

'

.
0¥ is a feasible solution

'
- - a , is care of an optimal solution

2
' : reduce problem - -

-
-

Marking:

Sort: 2 marks

Loop: 4 marks

No penalty if they forget to initialize the solution be empty – it’s an

important implementation detail but not an essential conceptual part

of the algorithm.

If a student gives an incorrect algorithm, but remembered that

Greedy Algorithms always sort the set then iterate through the sorted

list, they should get 4/6

Part B : [14 marks]

Prove that your algorithm Xnds an optimal solution. Use any valid

proof technique.

Solution:

Let A be the algorithm’s solution and let O be any optimal solution.

Sort O into ascending order.

If A and O are identical, then A is optimal.

Suppose A and O are equal up to and including , but diFer in the

next position. The algorithm Glls the next position with , so O

must Gll the next position with where x > i+1. This implies

, so we can remove from O and replace it with

without pushing the total over k. This new solution has the same

cardinality as O, so it is also optimal, and it has fewer diFerences

from A.

We can repeat this sequence until we arrive at an optimal solution

that has 0 diFerences from A – so A is optimal.

TL;DNR version of this proof:

Let O be any optimal solution that does not contain the smallest

value in the set. Swap the smallest value for any value in O. The

result is still optimal. Continue until all the smallest values have

been swapped in. This matches the algorithm’s solution.

Alternative Proof: Induction on the size of the set of values.

Base case: If |S| = 0, then the empty set is the only solution (and

thus it is the optimal solution.

Inductive Hypothesis: Assume the algorithm always Gnds an

optimal solution when the size of the set is n, for some n 0.

Let |S| = n+1, and assume the set has been sorted into ascending

order. If > k, there is no nonempty subset that sums to k, and

the algorithm correctly solves this case.

Assuming there is a non-empty solution, let A be the algorithm’s

solution and let O be any optimal solution that does not contain .

Replace any element of O with . The result is still an optimal

solution (call it O’), so the algorithm’s Grst action is correct. This

reduces the problem to a set of size n with a target value of .

By the inductive hypothesis, the algorithm Gnds an optimal solution

to this reduced problem.

O’ also contains a solution to this same subproblem. This implies

|A| = |O’| so A is optimal.

Marking:

The marking method here should be similar to Question 2, but it will

depend on the proof type chosen by the student.

For the “eliminate diberences” approach the essential concept is

summarized in the TL;DNR version. If they express this idea clearly

they should get at least 10/14

Example of an answer which is insurciently clear:

“We should never take a larger value when a smaller one is

available”. I would grade this at 7/14. The idea is there but it is not

fully developed.

For the inductive approach, use this grading scheme

Base case: 4 marks

Inductive Hypothesis: 3 marks

Inductive Step: 7 marks

In each part, give partial marks for proofs that have the right ideas

but don’t express them clearly.

Note that the base case can be set up with sets of size 1 rather than

with the empty set.

QUESTION 4 (2 Marks)

True or false:

 David Hubman was a pioneer in the Xeld of mathematical origami.

TRUE FALSE

Solution: True

Marking:

True 2 marks

False 2 marks

No answer 2 marks

Yes, everyone gets 2 marks for this question. Apparently some

people think I am trying to trick them with the diYerent font sizes

for TRUE and FALSE.

Dynamic oitogramming
µ #a greedy algorithm 2aFE%I

* ftp.Z-feia?EeZFsFhseb2voblem ,
F-LFF ⇐

, dynamic programming applies when the subproblem

overlap , that is , when subproblem share subproblems .

* Dynamic programming algorithm solves each subsubproblem just once and then saves its answer

in a table → avoid recomputing

* - Sara's 44¥ I I, innit dynamic programming algorithm :

I - characterize the structure for an optimal solution

2 . Recursively define the value of an optimal solution

3
. Compute the value of an optimal solution , typically in a bottom

- up fashion
4. Construct an optimal solution from computed information

.

'

. Dynamic Koopamining vs Divide and conquer

Drc E. THEE to HYE, subproblem (EMELIE- 44Gt .EE#zGh- subproblem,

Dp
'Tilts # FE EET 'T subproblem Effy'zgEIE¥F¥, LEE'EE¥'Eras subproblem

if '÷¥l : Coin change ⇒ { Is 4 , 93 CHI greedy FEI -let*tGff#E,
↳ HF dynamic programming ! ! !

Base case : Min
-
coins coj-OHIZF.tk#HtafidFEEI-LEs

Min - coins Cx) -- o if × - o H Etat'¥3tA mints.IE#FittFEiEtETET .

Recursive part is :
→
¥FkG¥T¥¥¥

→ f-IE.EE#-taGsubsolution
I

Min
-
coins Cn) = It {min (Min - coins Cn - Ci) ,- * -

Min - coins (n - Cs) ,
- - -

Min
-

coins (n- Ck)

) 3

At#¥i¥H±E, revisit ¥ktGffE± , ⇐SHIKHA't I ¥F3¥tEFGf¥ .EE#FttEH-tEH7ItFeEtGfffE

→
¥
.

' a.EE#3feAuayFixEElEtaf'KBEkAEh48sz.

GALILEE
a- →

#a¥tL¥t¥t¥coinEfE¥h¥EE¥y O LIF , i.e

T.FI?EaHi#T4/EFEhtIEGftnE,-
at me

.

e- -

Kk19415 : IGA
o O D

%
Ee'E¥3 HE a- '2 , best solution is 3 £42 , 5¥ # is Er

'ELS

'HETE'¥4

Off'Ef'£i¥tx¥fGf ELLIE't 1217ft'¥
,
#¥.EE#ft-iEtiIT-HItGfEE4sa9-8kiFE

,
He tis #'IR 'Z±¥¥tP3 -TEELA, AGH. It #n3FA±EEE¥

=p E'¥43 , AGH sit EAT
, i? 8

,
I#n'EE 8-712 HIS - ¥14 Taf coin , : . #a S - TEIFI 4

0 Do
¥4.fi#z8..E-t4taGthkita . . .

¥-44 -1¥ , FEA Oshima solution HIS 3 'T 4 coin

complexly : Construct AE] HIS Ocn)

Revisit AS Ocn, } Och)

(
'

a?EE= -

.
The rod - cutting problem

* Given
a rod of length n , and a table of prices Pi for is 1 , 2 , 3

,

- - - -

, n (Fel
' F- Et#FEIG trod

Ftt#Eilat to F- -64) , determine the maximum revenue he obtained by cutting up the rod and selling the

pieces .

↳ todtafttfk.IE#z4gq

↳ length I 2 3 4 J 6 7 8 9 10

price l J 8 9 10 17 17 20 24 30

i. Is'¥n= 4 ,
I¥HaG he sit 2¥22 ⇒ 2*5=10

*
'# n -

- lo , '¥zktaG k¥7'¥Hki¥afFtD ⇒ 30

ESTHER, #
'EEE -T '¥eEEt÷¥ E- 2nd GF : I - TYEE ¥

, FfItz¥ITL¥f¥ Cl , 4 , 9)
,
LEE'-27 -£4, given

in
,
I.I'TH. He n T LIFE 7¥ : I . 2 , 3 . -

- - - n

i
- Recursive part :

Base case : CutRod co) = O # 22¥ # fftafitz , revenue

Cut Rod (n) = Max { 3, t cut Rod (n - l)
,

-
-
→

← k t cut Rod Cn- 2) , Ffa-ffEi7i¥¥EhEE gu- I

'ETD IEE , F⇒¥u . . -
-

Itt't'¥¥d 7, put cue Rod Cn- n)

}

CutRoda , n) :
comme the maximum

t [o] = 0

for j -- I to n :
ESTHER'T-4

'K¥7 32K¥ , Ff - L¥ai¥tE.IE#EaynGfTaEfztaS-tEZKEEE-tEtiJ
Current - Max = - D

*aloof
"" { for i. , ⇒ ; :

#*⇐⇒⇐ ''¥

"÷¥¥÷⇐s¥Hbuild¥E¥Hk⇐¥¥⇒¥iiy,
current - Max = Max (current - Max

,
3-4-3 tr [j - i],

t. append (current - max,

return ten]

Reconstruct the solution CHEF'#tp-zftk.at#zepFE-Dgf& → AI SE's]e # s reconstruct

cut Roda, n , i → Hit -417¥'FEsa9 rod , ht Keath'E¥IEz -tf. - fq
LEO] -- O # maximum revenue for n

Sto] =0 # the oaitimal first cut torn

for j = I to n :

S . arend co)

current - max = - y

for i= I to j :

if current- man on his t re ;- is : }h%¥¥i¥L¥LtIE¥.BA#ntaGnIHZZkEEEperr -

current - max = Hi] -1 SEI - i] f¥t¥ - LEE
~ -

SE;] -

- i # '¥ '¥4*¥ - DGSE'¥±
me

f. amend Couvent - Max,

¥i¥¥e 0cm)
,
1¥# The :# T loop , HETE subproblem Iaf IEEE - T list ¥¥tE£E¥$3f¥¥kit¥¥ subproblem.£f¥¥ , I'I# 375 fit ,

⇒ ate 'EE¥ESF GG it
.

Hint - cut - Rod - solution Cbn) :

(t , s) = Cut - Rod C 7, n)

while n > o :

{ tint Sten]

n : n- ZEN]

if'IzEI : shortest lath

fEEi2E¥y #¥ graph :

o , m * FLEETvertex Ct , y) #1¥ edge f¥ (x , y ti) # Cathy,⑤→ O→ O - - - - O * If # edge fat Ez -it cost :

I t d L w ca , b : c , d) : the cost of the edge from

O→ O→ O -

e - -

O ca - b) to Cc , d)

µ (f d * Goad a

.

least - cost path from co , o) → Cn , my

O→ & -7 O -
. . .

O

c
' ' 4

(l l l
l c C

'
c ,

(

o- o -70 - -④n , O
n, m

if'Iz¥I : shortest lath

k¥212 # Fay #¥ graph :

o , m * FIFTHvertex Ct , y) #1¥ edge f¥ (x , y ti) # Cathy,⑤→ O→ O - - - - O * If # edge that#EEE -T cost :

I t d L w ca , b : c , d) : the cost of the edge from

O→ O→ O -

e - -

O ca , b) to Cc , d)

µ (f d * Goad a

.

least - cost path from co , o) → Cn , my

O→ & -7 O -
. . .

O

c
' ' f

(l l l
l c C

'
c ,

(

o -so→ o -
-④n , O

n, m

¥i¥¥¥ 'T lath ?

* Every path from co . O) → Chim) EE n 'T down edge Itami right edge

* The total number of different paths from co . O) → Chim)

= number of ways of interleaving the down and right edge

* Haki'2¥F mm , Atm number of different earth is ELL ?
which is c2n = c2h1C2n-Y--__cnt#

= In * 2nn÷ * Iffy * -71(n! h !) n (n- l) (n - 2) - - - I

.

'

- Ttt't'¥ # 7 Each term is 22
,

whole thing is 72
"

i .tk# brute force E.

IF 21 KLEE ,
tho . o) → Cn

,
m)

, EEE - ¥ ,
Eh.IE Cn- I , m) ,

EEK.FE.cn , m -y

→
£573410,0 → n - I , m ¥7 cost that n- I , m → n , m ↳ g- cost

Recursive version :

>

Min- cost -- min { min- cost (n-i , m, + won. , ,m , n.mg/gy#E'
' " It" " ¥'t I #47%9-51754

hmm mm

min- cost (n , m - i) t w Cn , m - I '

- n , m) }

In
me)
-

Subsolution#GE's'IEFtHii¥ft¥ - T 2 - d array # : Nic In] Em] = Min- cost Ci , ;)

¥Kfz£¥xTz ICI, 'ET list '¥. A'IZ CATH. - KI - KEEF -F't -5115¥)
, complexity ¥⇒f7IO Cn #my

4. 172417

① FHF± Me In] Em] ET TETE.EE#t-F4IF-EEEfEtII4AfaGtEFE, teth Nic [IIE;] # ta - T ' ' H " , A- fkitzti FREE #a #Ei] ZEIT

} [ITE's - I] /
' '

v
' '
→ yah [i - I] EJ] #GG

② Edith.AE#ef'EEfaTtsEEt-tII - T :

if Nic [n] Im] == MC In] Em -D t w Cn , m-I : n , m):

II vertex = (n , m - l)

else :

£5 vertex .- ca . " m,
} ocntmj

Total complexity : O Cn# m) t o (ntm) = Och#m)

i 4 : Longest common subsequence
mm

↳ Subsequence : T is a subsequence of s if we can get T by deleting some characters

of S .

longest common subsequence : Given two strings 7=3, 32 . - - Tn and Q=q , qz . . . gin with length n , m

respectively , how can we find the longest common subsequence of land Q ?

FETTE .EE# Gif proof , THEY'¥ I. LIFTS recurrence relation

if 7n== 9in : # 3¥. 9 E - t If -4¥

ZCSLC 7. Q) =
, + LCSL C } [I -

- - n- I]
,
Q [I - - - - m - I])

else :

LCSL CT , Q) = Max CLCSL CT [I -
- - n- I]

, Q)
,

LCSL C 9 , Q El .
- - - m - I])

LCSL C } [I -
- - n- I]

,
Q El . - - - m - I]))

II # A- :

#n't Tn = 9in
,
#Hu 7h# 9M - TE te optimal solution matched together

to

EIIEA.fr#aqmEFFf-T7ItIoetimal solution ¥ F- - matched together

÷ if there is an optimal solution doesn't include 2n. or 9in .

We can construct a new optimal solution 0¥ such that Tn and qm

are matched together

.

'

. lol 2 10*1
-

'

. Contradiction !

Therefore , at least one occurrence of 7h19am in optimal solution

Proof continue :

Sunosse Pu and am does not match in the optimal solution

I . optimal solution looks like : (Sunrise 7n=9m= X ,

7 : 3, 72 73 74 - - -
- 3mi X

111-
Q

'

. 9 . 92 93 94 - - -X 9in - i X

we can construct another optimal solution 0*10016 like

7 : 3, 72 73 74 - - -
- 3mi X

111 I
Q

'

. 9 . 92 93 94 - - -X 9in - i X

101=10*1
0¥ is also an optimal solution

-

'

. when 3ns gun , pan and 9M will be in optimal solution and will be matched

together
IFHiaf-v-tsatt.it#A- 3¥' - Tease

else part :

{ : 7, 72 73 74 - - -
. - . 3mi X

Q : 9 . 92 93 94 - - - . 9in - , y

HEE 3nF 9mi

EEK, Rn Its 9 ; Cj - my FEET , AGH 9mFlI%k¥t
¥247's Cja n) # 9in #BEI , #hITnFH5I¥
Ifk,

#T¥⇒fF.# I solution &, #TIFF'hkEf

HEI 'T case IF # IE it EFI subproblem

k¥71743321 , 'Hii¥*E£Gf :

Flat .#'
'

EEN'T base case :

LCS L Cl , 1) = I if 7=-9,

= 0 otherwise

Lcs L (I , j) =/ if Les L Cl , j - i , ==1 on 3 , == 9; for all j >1=0otherwise

KSL (i , is =L if LCSL Ci- I , I) = =L or pi = : 9
,

for all i >1=0otherwise

¥Frtt4E#Iet£ :

E I =]
my

-

W

H
l

l

O
ti

-

O ' 080Sf

For instance :

←
represent the length of Lcs between ' ' PALINDROME ' ' and
" MA ' ' oily equals to 1

El hf :

I - Store additional information

2 . Reconstruct :

start from optimal num T :

1. FIT at . Et m → FE# File.#If

2. Etat FAI . Next → Flat ha ¥ #I

-
t - a

- -

-
-

complexity ; O Cn # m)

He;ZEI : subset sum

↳ Given a set S of n integers and a target value K
,
does s have a subset that

sums to K ?
I N ? - complete

↳ 2¥, HF divide and conquer Clair sum a# Laf ,
I

Ocn # 2£ ,

Dynamic Programming Algorithm

FEEL
,
Kk -TT'EEi2: see .EE# 'Eff positive integer

Given a see s of n positive integers and a target value K
,
does s have a subset that

sums to K ?

I
-
① Sort the positive integers in S in ascending order

SI { Si , Sz , 53 - - - . Sn}

f Tha!":{Is' "! I?" a ""e it "' ' s" - " "3 has a subset

* E. g . S = { I , 4 , 7 , 9 , 12} , K = 14

* sub sum CJ , 14) = True

* The subset that sums to 14 is { 1.4 . 9 }

↳ Sn ¥44 Fe subset that sums to K
,
FENI# Subset that sum to k

immer-r-ui

{ Sub sum Cn , K) = T if sub sum (n - I , K - su) = T /
sub sum Chik) = T if sub sum (n - I

, k) = T
V

' ' Subsumcn , k, = { Subsumcn
- I , K - su,

sub sum Cn - I , k)
set k

µ
BE

↳
FET parameter ,

'¥ generalize

F

← T

subsume i. x) = Subsume i - I . s)
, { da , b , C , DD⑤j

I- t
sub sum Ci - I . x - si) t#

Subsun (n - I
, kn){ subsume n- I , k)

Base case :

I . Sub sum Ci . o) = T # 12=0 If# .

- T '
'

TEETH

2 . Sub sum Ci , x) = T ,
if s, = x

sub Sum Cl , x) = F
,
otherwise

3 . Sub sum Ci , x) = F if x - o

4 . Sub
sum Ci

. X) = T , if si = ×

Subsume i , x) = Subsume i - I . £)
,

sub sum Ci - I . x - Si)

↳
THEE, - FATE ,

i. e FA-T data structure #7¥ , S = { I , 4 , 7 , 9 . 1.2 .

K = 14
-#-=

T F
a- FEI

n

4. AIGA

↳ FIFE reconstruct 1¥ construct AGE't EE Ff additional information

Comalexity : E.fz¥ - T n# k GfEk¥E . HI , #i¥ KEEK Eft't
, Eh. #¥:}.

↳ if Ks 2
"

,
then 0 (n # 2 ")

Hattie chain multiplication

↳ Given a sequence L Ai , Az , - - - - An 7 of n matrices

↳ wish to compute A , . Az - As - -
. - • An

¥! .si#4qEi*EtEkGfIstsasa :

(A. CASCA , Ace))) (AdCA2A3) Ay)) ((AAL) CASAD) ((A , ca . Asia,
(faith) As) Ay)

III , H-T-ttiEZIKEF.GE#4eGGfiEf

Matrix - Multiply CA , B) :

if A
- columns f- B. rows :

error
' ' invalid "

else :

let C be a new away
with size A. rows x B

. columns

for i = I to A - rows :

for j -- I to B - columns :

cij -

- o → - IEEE #initialize , FEI. T- Fatty't loop 'tEH¥k¥q
for 12=1 to A - columns

i.III IaIIb i
.

→ HYE, EIKE
tetum C

HEE'VE : Ai : 10×100 , As : 100×5
,

As : Tx Jo

(CA , Az) As) (Ai# As))

↳
A , As ⇒ 10×5×100--5000 :kH¥¥

↳
A,zl¥z ⇒ 100×5×50=25000 :kH¥¥

µ t t t

AiAz(10×5) . As = 10×5×50 = 2000 HYE
, A , .AZ/fz(dooxJo)=1oxlo0XJO-- 50000

'-1ftq
11 It

75001244¥, lo times more calculation
popc-

i. if'¥E S -Thiele HIEI :

Matrix- chain multiplication problem : Given a chain LA , , Az . . . ,An7 of n matrices ,
where i = I

.
2 .

- - - n

matrix Ai has dimension Pi- i x fi , fully parenthesize the 2ndact A. , Az . . . An

in a way that minimizes the number of calculation

Recurrence Relation : Tcu) indicate the number of alternative parenthesitations of a sequence
of n matrices by day

Base case : a- I →
'2¥ - ¥4 Aztec ,

AGH. 3cg -- I

n z z → product of two fully parenthesized matrix subrvoducts

(µ

↳ Et 't kn) -t¥¥¥fGGF¥tu

if n -- I

> 3"' { ±'
ace, gene, it n 't2

1<=1 -

n-I CFE #¥25.
'FIGG FEE#to→

k= I , 2 , - -
- i

'

IEEE)

Amusing dynamic ailogramming :

I - characterize the structure for an optimal solution

2 . Recursively define the value of an optimal solution

3
. Compute the value of an optimal solution , typically in a bottom

- up fashion
4. Construct an optimal solution from computed information
T→2¥t#IF4T¥z¥z

1. If.tv#EEIx9u.5IIfEEbLA, Az -
- - - An > GS optimal solution

→

= If# if LA , Az -
. .
#
k > Ffa 2A Kei Aku -

-
-. An> I#GG Rhinal solution # combine

2 . i m fi , j] be the minimum number of scalar multiplications needed to compute the matrix Ai . .

0 if
ME" J] = {

min { m Ii, k] t m [Kt , , j] t Ti - i Kati } it is

it Kaj

Stig 's] = K → #¥ reconstructaf

get
IFE.LT#TAEEtiEafEH3-t-EEfminimumqAordeu

→ PE'¥ Gf.IE#fEmEiskIEem-Lkti , j] 'I#Ft -If{ in

targets.

[
feast # k that Es - HEA f-5¥ .fi#at-At

4. Reconstruct

t.IQ#HftSS- i. I] , reconstruct .GE#ItEkEeEEE4

CISC/CMPE-365*

Test #3

November 1, 2013

Student Number (Required) ______________________

Name (Optional)________________________________

This is a closed book test. You may not refer to any resources.

This is a 50 minute test.

Please write your answers in ink. Pencil answers will be marked, but will not be reconsidered

after the test papers have been returned.

The test will be marked out of 50.

Question 1 /30

Question 2 /20

TOTAL /50

I guess the issue for me is to keep things dynamic.

Robert Downey, Jr.

Question 1 (30 marks)

The President of Elbonia, impressed by your ability to stack concrete blocks, has put you in

charge of packing a large container full of national treasures which he plans to take with him

for “safe-keeping” on his upcoming trip to SwiXerland.

The container can hold at most k kilograms. Each treasure ti has a value vi and a mass mi.

Your task is to Ynd the most valuable combination of treasures that will Yt in the container.

For example, if k = 10 and the table of values and masses looks like this

t1 t2 t3 t4 t5

Value 210 kronks 200 k. 150 k. 75 k. 24 k.

Mass 8 5 6 3 4

then the optimal solution is to take t2 and t4

Create a dynamic programming solution for this problem. Here is a deYnition that may be

useful:

Let MV(i,x) be the value of the most valuable subset of {t1 ... ti} such that the total mass of the

selected treasures is <= x

a) Characterize the solution as a sequence of decisions

b) Show that the problem satisYes the Principle of Optimality

c) Give a complete recurrence relation for the problem

d) Describe the order in which you will compute the solutions to sub-problems

e) Explain how you will extract the details of the optimal solution

(Write your answer on the next page)

-

✓ r

XXVCZ , ¥
-
- u

r i r I
#=

if mi z x → take to

Me . r

MV (i , x) , i -- I else ,
outfit O

MV Ci , o) = float (' ' in -fj

NIV Ci , x) = Max (Vi t Mv Ci - I , x- mi) ,

MV Ci - I ,
X))

(d) Final answer will be 2- dimensional away such that row represent the increasing

of element and column represent increasing of x value
.

when building up answer , we

fill in one row of all column increasingly .

(e) The optimal solution will be at MV Ei] Ex] ie . the bottom right position . Given this value, we first examine

if µv[i - I] [X - mi] have the same value as aarti] Ex] , if yes, ti is not in the optimal set , else

it's in
.

Or we can just record more information' while building up solution

2 '
t W (Ci - I , ;) ,

Cis 's)) if j==o
Pci, j ,

x) = 3 Ci - I , j , × ,

{ Cis 's , x) = 3C i , j - I , ×) Tw Cli , j - i) , cis ;)) if i =-D

Question 2 (20 Marks)

The President of Elbonia has been arrested on his way to the airport, and as his assistant you

are wanted for questioning. Your escape plan is to walk from Elbonia to the neighbouring

country of Dorkis. The paths between the two nations form a rectangular grid with n rows

and m columns. You are at the top left corner of the grid and your destination is at the

bojom right corner. All of the horizontal path segments run left-to-right, and all of the

vertical segments run top-to-bojom. Each path segment has a value ajached to it that

represents the time required to walk that segment.

So far, this is identical to the problem we examined in class. Here is the dilerence: some of

the path intersections are known to have toll-booths, charging 10 kronks for passage. You

only have k 10-kronk coins in your pocket, so any path that includes more than k toll-booths

cannot be used. (For example, if k = 3, you can pass through up to three toll-booths, but no

more.)

You may assume that there are no toll-booths along the top edge, or along the right-hand side

of the grid, so it is possible to reach the goal without passing through any toll-booths at all.

Your mission is to Ynd the fastest route that passes through at most k toll-booths.

Here is part of a recurrence relation:

Let P(i,j,x) be the length of the shortest path from the starting point (0,0) to intersection (i,j),

passing through at most x toll-booths.

P(i,j,0) = inYnity if intersection (i,j) is a toll-booth

 = min{P(i, j-1, 0) + w(edge from i,j-1 to i,j),

P(i-1, j, 0) + w(edge from i-1,j to i,j)} if intersection (i,j) is not a toll-booth

for x > 0

P(i,j,x) = min{ P(i, j-1, x-1) + w(edge from i,j-1 to i,j) ,

P(i-1, j, x-1) + w(edge from i-1,j to i,j)} if intersection (i,j) is a toll-booth

 = min{ P(i, j-1, x) + w(edge from i,j-1 to i,j),

 P(i-1, j, x) + w(edge from i-1,j to i,j)} if intersection (i,j) is not a toll-booth

-

=

-

-

Is

- -

-

⇒±⇒⇒**⇒÷:÷÷÷

as

to

a) Complete this recurrence relation by adding appropriate base cases. For convenience,

here is the recurrence again:

P(i,j,0) = inYnity if intersection (i,j) is a toll-booth

 = min{P(i, j-1, 0) + w((i,j-1),(i,j)),

P(i-1, j, 0) + w((i-1,j),(i,j)) } if intersection (i,j) is not a toll-booth

for x > 0

P(i,j,x) = min{ P(i, j-1, x-1) + w((i,j-1),(i,j)),

 P(i-1, j, x-1) + w((i-1,j),(i,j))} if intersection (i,j) is a toll-booth

 = min{ P(i, j-1, x) + w((i,j-1),(i,j)),

 P(i-1, j, x) + w((i-1,j),(i,j))} if intersection (i,j) is not a toll-booth

b) Explain the order in which you will compute the solutions to sub-problems.

Base case :

3 (is j ,
x) = 3 Ci - I , j , x) t w Cli- list) ,

Cis 's)) if j ==o

} (i , j ,
x) = 2C is 's -I. x) t w Cci , j

- it ,
Cis 's)) if i -_=o

To compete the solution to this problem ,
the solution consist of

3 dimension : i . j , K

Sol - list Eilts
] Ek] given length of shortest path from co , o) to Ci , j)

with at most k knouts .

we fill out the array by at first Keo → row by now

Question 1 (30 marks)

After graduation you /nd yourself working in a steel mill, ironically named Dynamic

Industries. The mill produces steel bars in a variety of lengths and the bars are then cut into

shorter lengths for sale. Your job is to determine how to cut the bars so as to maximize the

total sale value. Ho hum, we did that in 365 with Prof. Whats-his-name. But wait! This is

diLerent! Now you don't have unlimited access to the bar-cuOing saw. For each bar, you are

told the length of the bar and also the maximum number of cuts you can make.

For example, suppose the sale value for pieces of length 1 through 5 are given by this table:

Length 1 2 3 4 5

Value 2 3 5 7 8

If you are given a bar of length 5 and you are allowed to make 3 cuts, then you can make

0 cuts, for a value of 8, or

 1 cut (perhaps into a 1 and a 4, for a value of 9) or

2 cuts (perhaps a 1 and two 2's, for a value of 8) or

3 cuts (perhaps three 1's and a 2, for a value of 9).

Consider the following recurrence relation, which is based on the “leftmost cut” method:

Let MV(n,k) represent the optimal value we can get from a bar of length n, using no more

than k cuts.

MV(n,0) = Value(n) #no cuts allowed

MV(1,k) = Value(1) #can't subdivide a piece of length 1

MV(n,k) = max{ Value(n), #no cut

 Value(1) + MV(n-1,k-1), #leftmost cut at 1

 Value(2) + MV(n-2,k-1), #leftmost cut at 2

 Value(3) + MV(n-3,k-1), #etc.

 ...

 Value(n-1) + MV(1,k-1)

 }

2014

→
i7&¥¥¥¥ - ¥4 , s - T EE

#HIM

↳ KEEFE EE - T base caseEti ok

a) (7 marks) Show that the problem satis/es the Principle of Optimality.

Suppose that in some optimal solution S, the leftmost cut is at i. Then the remaining set of cuts in S

are a solution to the reduced problem of cu8ing a bar of length n-i, using at most k-1 cuts.

Suppose there is a be8er solution to this reduced problem. Then we could combine this be8er solution

with the leftmost cut of S to get a solution that is be8er than S, which contradicts the optimality of S.

Thus the embedded solution to the subproblem of cu8ing a bar of length n-i using at most k-1 cuts is

optimal. Thus the Principle of Optimality is satis@ed.

Marking: the key concept is that an optimal solution must contain only optimal solutions

to subproblems. If the student shows that they understand this, they should get at least 4/7

b) (7 marks) Design a table to hold information about optimal solutions to subproblems.

Use a 2-dimensional table MVT with “lengths”: 1..n as labels on the rows and “number of cuts

allowed”: 0..k as labels on the columns (or vice versa). Use MVT[i,j] to store MV(i,j) – ie the optimal

value of a bar of length i, using at most j cuts

Marking: they should remember that they need a column (or row, if they transpose the

table) for “0 cuts” - take oJ a couple of marks if they forget this. Again, the key concept is

creating a table to store results so that nothing needs to be calculated twice. If they show

understanding of this, they should get at least 4/7

Some students may choose to store more information in the table, such as the cuts that

have been used to achieve the optimal solutions. This is not a problem.

-

i

c) (7 marks) Describe the order in which you will compute the solutions to subproblems, and

why.

Observe that MV(1,j) = Value(1) for all j. Thus we can @ll in the @rst row of the table immediately.

After this, @ll in the table row by row, since each MV value depends only on values from previous

rows.

An argument can also be made for @lling in the values column by column, since each MV value only

depends on values from the previous column.

Marking: the key concept is computing solutions to subproblems in a logical order so that

when MV(i,j) is to be computed, all the relevant smaller problems have already been

solved. Understanding that is worth 4/7, even if they are unable to give an eJective order.

Some students may take a recursive, top-down approach. This is ok, although it makes it

diRcult to describe the exact order in which subproblems will be solved. In this case the

answer will probably be that subproblem solutions will be be computed in an “as-needed”

order, which is preSy much self-explanatory.

d) (7 marks) Explain how you will extract the details of the optimal solution.

Once the table is full, the maximum possible value obtainable will be the value in MVT[n,k] (the

bo8om right hand corner of the table). Starting from this point, we can re-evaluate all the possible

predecessors of this table element, and determine which one led to the @nal optimal value. This gives us

the position of the @nal cut. Then we repeat the process to work back from there, until we have

determined each cut in the optimal solution.

Alternatively, every time we compute MVT[i,j], we could record the option that gave us this value.

Then we can trace back from MVT[n,k] without having to re-evaluate the possible predecessors.

Marking: Students' answers will depend on what information they choose to store in the

table, but they should give a good explanation of whatever is appropriate for the table they

described. If they are all at sea but they give enough of an answer to show they

understand the idea of tracing back from the Unal table entry, they should get at least 4/7

'ITE I# 3 'T TE
' II : FH. HI, NWT En , KI

SI
,

he iterate ESTft -2¥, Tag z¥e¥

zt
or → ftp.t#mvTa-tFgtiEaftEItEfE.

-

Question 2 (8 Marks)

Let S be a set of n positive integers, with n >= 1

Let k be a positive integer such that k <= 1000

What is the computational complexity of solving the Subset Sum problem on S and k, using

the algorithm that we developed in class?

The algorithm we used creates a table that is n*k in size, and @lls each element of the table in constant

time. Since we know k <= 1000, the table has <= 1000*n elements. Filling them in takes O(n) time.

Marking: if they state that it is polynomial but not O(n), they should get 5/8. If they state it

is not polynomial because Subset Sum is NP-Complete, they should get 2/8.

-

-mSubset
Sum (n , K) BY 3¥ } - T n# K Saf Away

'L'¥4} K'TES Ifta kL= tooo

i
.

O (low
n) = 0 Ca)

Question 3 (14 Marks)

You are visiting Aggravatia, where the currency is based on coins of value {1, 4, 7, 9}. Nobody

in the country has been able to solve the change-making problem: given a target value k, /nd

the smallest set of coins that sums to k. The Minister of Finance oLers you the job of creating

a Dynamic Programming solution.

De/ne CM(k) = the minimum number of coins needed to sum to k, where k >= 0. For

example, CM(11) = 2, since 11 = 4+7

Here is part of a recurrence relation for CM(k):

CM(k) = 1 + min{CM(k-1),CM(k-4),CM(k-7),CM(k-9)} if k >= 9

a) (8 marks) Complete this recurrence relation by adding appropriate formulae for all

remaining cases.

CM(k) = 1 + min{CM(k-1),CM(k-4),CM(k-7)} if 7 <= k < 9

CM(k) = 1 + min(CM(k-1),CM(k-4)} if 4 <= k < 7

CM(k) = 1 + CM(k-1) if 1 <= k < 4

CM(0) = 0

Marking: 2 marks for each line. If they do it a completely diJerent way, give marks as

seem appropriate, depending on correctness. If they show they know the purpose of the

recurrence relation to describe a relation between the optimal solution for k and the

optimal solutions of smaller problems, they should get at least 4/8

-

{
⇐⇐⇐"" "" " **±"

b) (6 marks) Determine the computational complexity of computing CM(k) for k >= 0

We can use the recurrence to compute CM(i) for i = 1..k. Each computation is based on at most 4

previously computed CM values, so the algorithm runs in O(k) time.

Marking: If they say polynomial but not O(k), they should get 3/6

Some students may say “linear” or O(n) – that's Une.

CISC/CMPE-365*

Test #3

November 5, 2015

Student Number (Required) ______________________

Name (Optional)________________________________

This is a closed book test. You may not refer to any resources.

This is a 50 minute test.

Please write your answers in ink. Pencil answers will be marked, but will not be reconsidered

after the test papers have been returned.

The test will be marked out of 50.

Question 1 /25

Question 2 /25

TOTAL /50

Remember, remember, the *fth of November

20060593

Question 1 (25 Marks)

Suppose that you are given an n * n checker board and a single checker.

You must move the checker from the top row (row 1) of the board to the bottom row (row n). At each

step, you may move the checker to one of the following squares:

– the square one row down and one column to the left, if there is one – i.e. diagonally down to

the left

– the square one row down in the same column – i.e. immediately below

– the square one row down and one column to the right, if there is one – i.e. diagonally down

to the right

We will use the notation [a,b] to represent the square in row a and column b, so from [a,b] you can

move to [a+1,b-1] or [a+1,b] or [a+1,b+1], as shown in the diagram.

Each square contains a quantity of money – the value of square [a,b] is given by Value(a,b).

You are allowed to start on any square in the top row and finish on any square in the bottom row. Your

task is to create a Dynamic Programming algorithm to find the path from the top to the bottom with the

maximum total value.

Example: consider this 3*3 board. The values are shown in each square, and the optimal path is

highlighted in grey (the other squares have all been left white for clarity).

6 2 3

8 3 6

4 5 9

Define MV(a,b) to be the value of the optimal path from square [a,b] to the bottom row.

a,b

a+1, b-1 a+1,b a+1,b+1

¥7 'i¥¥¥ , FIFE .EE# square

→

-

#

I!¥zTf2E%f¥af¥ZeH4 ,
value cabs ;¥Ix¥F¥¥Isaf

a

/
Nw Catt , b- t)

,avca, b) = value casts) t Min C
-

Niv Cd-11 , b)
,

JEET#
'¥3 5k¥)

NIV (att , bti ,)

t
Soeecial case : M Ca , b) = Value Ca, b) t Min (Niv Catt , b) ,

Xxv (att . btl))

Mv ca , b) =
value Ca , b) t min (Mvc atl , b) ,

Mr Catt , b - l))

(a) [10 marks] Here is part of a possible recurrence relation for MV(a,b)

MV(a,b) = Value(a,b) + max{ MV(a+1, b-1),

 MV(a+1,b),

 MV(a+1,b+1)

 }

Complete the definition of this recurrence relation, or substitute your own complete recurrence relation

if you prefer. Think about base cases. Think about special cases when you are at the left or right side

of the board.

Solution:

Base cases: MV(n,b) = Value(n,b) for all b

Special cases:

MV(a,1) = Value (a,1) + max{MV(a+1,1), MV(a+1,2)} # there is no column 0

MV(a,n) = Value(a,n) + max{MV(a+1,n-1), MV(a+1,n)} # there is no column n+1

Marking:

Base cases: 5 marks

Special cases: 5 marks

If the student clearly understood what was required but could not properly solve the base cases

and special cases, they should get at least 6/10

¥*¥IE¥ 't #¥3

T

c-

-

(b) [5 marks] What data structure will you use to store the MV() values?

Solution:

The natural choice is a 2-dimensional array with the same dimensions as the board. Let MVT be this

array. Then MV(a,b) will be stored in MVT[a][b]

Marking:

I'm not sure what alternative answers might be given ... but the important idea is that we need to

be able to access each MV() value in constant time. If the student describes a structure with that

in mind, they should get at least 3/5

(c) [5 marks] In what order will you compute the MV() values?

Solution:

Using the base cases, we can compute MV(n,b) for all b

Then we can compute MV(n-1,b) for all b, then MV(n-2,b) for all b, etc

The last values computed would be MV(1,b) for all b

Marking:

The key concept is that the MV() values must be computed in an order that makes sure all

required information is available when it is needed.

Two dimensional
away

t.fi#nE3zEE5IEf%fEsaGEtt : Hits ¥
,
ggiztitt-EI-as.FITHE'¥

tow by row

-

- see

Question 2 (25 Marks)

Consider the 0/1 Knapsack Problem: Given a set of n objects S = {s1, ..., sn} , each with mass mi

and value vi, and a container with capacity k, we want to Wnd the maximum-value subset of

the objects that will Wt in the container.

A dynamic programming solution for this problem may be created using a recurrence

relation like this:

Let KS(i,x) = the maximum value we can obtain from {s1, ..., si} with a container of capacity x

if mi > x KS(i,x) = KS(i-1,x) # if si is too big, we can't take it

if mi <= x KS(i,x) = max{ vi + KS(i-1, x – mi), # we either take si

 KS(i-1, x) # or we don't

}

with base case

KS(1,x) = v1 if x >= m1

 = 0 if x < m1

Now suppose a further constraint is added: we can't choose more than r objects, where r is

any integer.

(a) [15 marks] Revise the recurrence relation to adapt to this modiWcation.

Solution: We can add a third parameter to the recurrence relation to indicate the number of objects we

are permi8ed to take. Each time we take an object, this number decreases.

Use KSL(i,x,t) to represent the maximum value we can obtain from {s1, ..., si} with a container of

capacity x and an object limit of t

&

Ksci , x , t) : the maximum value we can obtain from { s . . . - - -

, Sig
with a container of capacity ×

KS Ci , X , o) = O # Can 't take anything

if mi > X ,
Ks Ci, x ,

t) = Ks Ci - l . x , t)

if minx , KS (i , × , r) = max (KS Ci-I , x - mi , r - t) t Vi
,

Ks Ci - I , x
,
t))

KS Cd , X ,
t) = V , if m ,

a X

O if Mi > X

Then the recurrence becomes

if mi > x KSL(i,x,t) = KSL(i-1,x,t) # if si is too big, we can't take it

if mi <= x and t > 0

KSL(i,x,t) = max{ vi + KSL(i-1, x – mi,t-1), # we either take si

 KSL(i-1, x,t) # or we don't

}

with base cases

KSL(i,x,0) = 0 for all i and x

KSL(1,x,t) = v1 if x >= m1 and t > 0

 = 0 if x < m1

Marking:

The essential concept is the inclusion of a third parameter that reduces as items are

selected. A student who does this should receive at least 8/15. If a student gets the

recursive part of the recurrence correct but does not get the base cases, or vice versa, they

should get at least 10/15. A student who gets both parts almost correct should get 13/15 or

14/15

(b) [5 marks] What is the complexity of computing each KS() value in your revised

recurrence relation (assuming the relevant subproblems have already

been computed)?

Solution:

Each value is computed in constant time since there are Sxed number of relevant subproblems.

Marking:

It is not technically incorrect to answer “O(n)” or even “polynomial” but these are weak

answers, only true because “constant time” is included in O(n^t) for all t >= 0. Students

who answer in either of these ways should get 2.5/5

(c) [5 marks] What is the complexity of computing the entire collection of KS() values?

Solution:

The total number of values we need to compute is n*k*r and each one takes constant time, so the

complexity is O(n*k*r)

For 2 bonus marks, we can observe that values of r that exceed n can simply be reduced to n, since we

cannot possibly take more than n items. This gives O(n^2 * k)

Marking:

If the student understands that we need to multiply the number of values to be computed by the

time to compute each one, they should get at least 3/5

Students who respond that the complexity is polynomial should get 1/5, since they are claiming

that this is a polynomial-time algorithm for an NP-Complete (technically, NP-Hard) problem.

-

- Ocn 3)
"
- ¥ai¥E¥ZEA

-

???

& fishy. FIE comdexitytafa-EE.IE#tEEI ¥r5E'⇒¥£
(n3)

-

-

CISC-365*

Test #3

February 12, 2019

Student Number (Required) ______________________

Name (Optional)________________________________

This is a closed book test. You may not refer to any resources.

This is a 50 minute test.

Please write your answers in ink. Pencil answers will be marked, but will not be

re-marked under any circumstances.

The test will be marked out of 50.

Question 1 /28

Question 2 /20

Question 3 /2

TOTAL /50

Question 1 (28 marks)

Congratulations! Your international prestige as a problem-solver has earned you

a new job – you now operate a guided-tour business in Balatronia.

Tourists sign up for 1-week (Short) or 2-week (Long) guided tours of the local

mud pits during the summer season. There is a Short tour and a Long tour

starting each week except the last week of the summer - in which there is only a

Short tour. Each tour is worth a di\erent amount of tip money, based on the

wealth of the tourists. Your goal is to decide which tours to guide personally,

without choosing any overlapping tours.

For example, suppose the summer season is 5 weeks long. The tours starting in

each week might look like this. Tours are numbered according to the week in

which they start.

Week 1 Week 2 Week 3 Week 4 Week 5

1-week

tours Value = 10 Value = 7 Value = 12 Value = 4 Value = 9

2-week

tours

Value = 20 Value = 18

Value = 22 Value = 16

One solution is to choose with a total value of 45

A becer solution is to choose with a total value of 48

In Week 1, you can guide either the 1-week tour () or the 2-week tour

(). In Week 2, you are either halfway through tour or you can start

guiding either of the tours that start in Week 2 (if you chose in Week 1).

This question asks you to construct a Dynamic Programming solution to

maximize your personal proft. Your solution must work on all instances, not

just the example shown here.

Max- week Cl) = Valuecshore .) ftp.ff-t#safIE.EYaEjEf&t77- '⇒KG short

Max - week (2)
= Max C value (shore ,)t Value 042) , ftp.ff#yhftyfitf , ZEE LIE 'LEFF#LE

value (long ,))

Max
-

week (n) = Max C Value (short n) t max week Cn- l) ,

Value (long n- i) t max - week Cn-2))

table , which row represent the week number and column represent the
C- Intend to use a

value
. During computation, the table will be filled out start from ueekp

d- For Max- week Cn) ,
the ⑦Himal Value is shown on ma,- week [a] , check longing and Max- week In-D

as well as short n and max- week In- A]
,

choose the Max of them .
Then keep iterating through the detail of optimal

solution will be revealed .

e. complexity : Ocn, → II.EE#aAway3ettz.sizfaEIEGf-Eliott

(a) (5 marks) Explain how this problem satisfes the Principle of Optimality .

Your explanation must be clear but a rigourous proof is not required.

(Hint: Suppose the optimal solution contains a particular tour X. What can you

say about the chosen tours that precede X, and the chosen tours that follow X?)

This material was not covered in F2019 … but I have included the solution here

in case you are interested!

Solution:

Based on the hint: if tour X is in the optimal solution, then the chosen tours

that precede X must be a solution to the subproblem of choosing tours within

the weeks before X begins. Similarly, the chosen tours that follow X must be a

solution to the subproblem of choosing tours within the weeks after X ends.

These must be optimal solutions to these subproblems because if they weren’t we

could replace them by something beHer, which would improve the overall

optimal solution – which is not possible.

It is also possible to focus on the last tour in the optimal solution – it will be

either or . Whichever it is, the other tours in the optimal

solution must be an optimal solution within the weeks preceding the Knal tour

in the optimal solution.

We could also focus on the Krst tour in the optimal solution – it will be either

 or . Whichever it is, the other tours in the optimal solution must

be an optimal solution within the weeks following the Krst tour in the optimal

solution.

Marking:

A solution similar to any of the above 5

A solution that shows understanding of the P. of O.

without applying it successfully to this problem 3

For trying 1

(b) (8 marks) Give a recurrence relation for this problem.

Hint: Suppose the season is weeks long. At the end of Week , you will either

be fnishing (and gecing its value) or fnishing (and gecing

its value). Associate each of these possibilities with the appropriate

subproblem. You may want to use “ ” to represent the maximum proft you

can get in the frst weeks of the season.

Solution:

DeKning P(k) as above and Val(T) to be the value of tour T, we can use

Recursive part:

for k 2

P(k) = max (Val() + P(k-1), # Knish with a short tour

Val() + P(k-2) # Knish with a long tour

)

Base cases:

P(0) = 0

P(1) = Val()

Marking:

for a correct recursive part 5

for a partially correct recursive part 3

for trying 1

for a correct base 3

for a partially correct base 2

for trying 1

Students might omit the P(0) = 0 base case. That’s ok but their recursive part has

to be wricen in such a way that it never tries to recurse to P(0) … so if it refers to

P(k-2), it must ensure that k > 2.

fck)
=

-

(c) (5 marks) Explain and justify the order in which you will compute solutions

to subproblems. If you plan to use a table to store solutions to subproblems, this

is the place to describe it.

Solution:

Since the recurrence relation only has one parameter, we can use a 1-dimensional

array A to hold the solutions to the subproblems : A[i] will be used to store the

value of P(i). The array should be indexed from 0 to n. The array is initialized

with A[0] = 0, A[1] = P(1).

After that, the elements of the array are Klled in ascending order. Each element’s

value depends on the two values immediately to its left. This order is chosen

because it traverses the array in a natural manner and each element’s value is

computed as soon as the information needed is available.

It is also acceptable to manage the Klling of the table using recursion (or a

stack!) to keep track of the subproblems encountered. Each subproblem is

encountered multiple times but solved only once. Due to the nature of this

particular problem, the table will still be Klled in from left to right!

Marking:

For any rational plan for the order of solving the 5

subproblems

For an explanation with minor/signifcant/major errors 4/3/2

For trying 1

(d) (5 marks) Explain how you will determine the details of the optimal solution.

Solution:

When we know the optimal Knal value, we can look at the two values

immediately to its left in A to determine which of those options led to the

optimal answer. This tells us whether we ended with a Short or Long tour.

From whichever element of A led to the Knal answer, we repeat this process to

determine the tour we choose before the last one ... and so on back to the start of

the summer.

Alternatively, the table could have been deKned to also contain information

regarding the elements of the optimal solution. In that case, the extraction of

this information would be based on how it was stored.

Marking:

For a reasonably clear explanation of how to get 5

the information

For an explanation with minor/signifcant/major errors 4/3/2

For trying 1

(e) (5 marks) What is the complexity of your algorithm? (Use to represent the

number of weeks in the summer season)

Solution:

Each element of A is computed in constant time, so Klling A takes O(n) time.

Each step of the “trace back” is determined in constant time and there are at

most n steps, so Knding the details of the optimal solution takes O(n) time.

Thus the entire algorithm takes O(n) time.

Marking:

For a correct analysis of their version of the algorithm 5

For an explanation with minor/signifcant/major errors 4/3/2

For trying 1

QUESTION 2 (20 Marks)

You and your worst enemy are playing a game. Between you are three piles of

coins, containing and coins respectively. You take turns removing

coins according to this rule: on your turn you must remove a positive number of

coins from any one of the piles (ie you must take at least 1 coin). You win the

game if you take the very last coin.

Each possible game situation is described by the sizes of the piles such as (4,7,2)

or (2019,3,12)

If a single move can get from to we call a child of

. For example, we can get from to by removing coins

from the centre pile so is a child of

We can label a game situation “W” if the player who takes the next turn can be

sure of winning, and “L” if they can’t. For example is a “W” situation –

the player can take the whole third pile, but is an “L” - the player must

take 1 coin, then the other player takes the last coin and wins.

In general, a situation is “W” if any of its children is labelled “L”, and a situation

is “L” if all of its children are labelled “W”

Create a recurrence relation to determine if situation () is a “W” or “L”

(Write your answer on the next page)

Win- game (hi ,
Nz

, Ns) :

win- game CX , O
,
O)

win - game C o , X ,
O)

win - game co , o , × ,

} → win

win - game (hi ,
Ns
, ND = win if C win

-game (n .
- X

, na , Ms) lose

win - game (hi , Nz - X , Nz) lose

win- game (hi ,
ha , Nz - x) lose)

lose else

(a) (10 marks) Recursive part:

Solution:

I will use G(a,b,c) to represent the label of the game when the three piles have

sizes a, b, and c.

G(a,b,c) = “W” if G(a,b,x) = “L” for any x in the range [0..c-1] or

 G(a,x,c) = “L” for any x in the range [0..b-1] or

 G(x,b,c) = “L” for any x in the range [0..a-1]

 = “L” if G(a,b,x) = “W” for all x in the range [0..c-1] and

G(a,x,c) = “W” for all x in the range [0..b-1] and

G(x,b,c) = “W” for all x in the range [0..a-1]

The two cases given cover all of the possibilities, so it is not actually necessary

to specify both. For example

G(a,b,c) = “W” if G(a,b,x) = “L” for any x in the range [0..c-1] or

 G(a,x,c) = “L” for any x in the range [0..b-1] or

 G(x,b,c) = “L” for any x in the range [0..a-1]

 = “L” otherwise

is perfectly acceptable

Marking: - for a correct solution 10

- for a solution that is mostly correct with a minor error

such as making the ranges start at 1 instead of 0 8

- for a solution with a major error such as leaving out

one of the sets of subproblems 6

- for a solution that looks like a recurrence relation for

the game but is seriously wrong 4

- for a solution that shows limited understanding of

what is required 2

- for trying 1

(b) (10 marks) Base case(s):

Solution:

The following is su\cient:

G(0,0,0) = “L”

but students may include others such as

G(0,1,1) = G(1,0,1) = G(1,1,0) = “L”

Students may use other sets of base cases such as

G(0,0,x) = G(0,x,0) = G(x,0,0) = “W” for all x > 0

G(0,x,x) = G(x,0,x) = G(x,x,0) = “L” for all x 0

Another possible answer is (see note below)

G(x,y,y) = G(y,x,y) = G(y,y,x) = “W” for all x > 0 and y 0

The important thing is to have a set of base cases such that

- every possible sequence of moves (eventually) reaches one of the base

cases

- situations with one or more empty pile are covered

Note: Students might not include a base case for (0,0,0) since that actually

signi^es the end of the game. That’s ok as long as they “cover” all the states

that lead to (0,0,0) so the recursion can’t end up at (0,0,0) and not have a

resolution. The ^nal answer shown above is an example of such a set of base

cases.

Marking:

pre`y much the same as Part (a). As noted above, it is important

that every sequence of moves in the game ends up in a base case.

QUESTION 3 (2 Marks)

True or False:

It was just a semi-frivolous T/F question. The correct answer was

“FALSE”

CMPE/CISC-365*

Quiz #3

November 8, 2019

Student Number (Required) ______________________

Name (Optional)________________________________

This is a closed book test. You may refer to one 8.5 x 11 data sheet.

This is a 50 minute test.

Please write your answers in ink. Pencil answers will be marked, but will not be

re-marked under any circumstances.

The test will be marked out of 50.

Question 1 /24

Question 2 /24

Question 3 /2

TOTAL /50

“I guess the issue for me is to keep things dynamic.”

― Robert Downey Jr.

QUESTION 1 (24 Marks)

You have been chosen to plan a canoe trip down the No^aLo^aWa^a River for

the Queen’s University Environmental Exploration Nature Society (acronym:

QUEENS) . Canoes are available for rent at trading posts along the river. You

will start the trip by renting a canoe at Post 1 (where the river begins) and end

the trip in Post n (the end of the river). BUT ... you don't have to keep the same

canoe the whole way. You can stop at any post, drop of the canoe you have and

rent another one. You can only travel downstream. For all pairs with

, the cost of renting a canoe at Post and dropping it of at Post is given

by a predetermined matrix Cost().

For example if there are hve posts in total, the costs might be

Cost(a,b)

matrix

Post b

Post a

x 10 35 50 65

x x 30 35 45

x x x 15 25

x x x x 20

x x x x x

In the example shown, you could rent a canoe from to , then rent another

from to , then another from to , then another from to . This

would cost . Another solution would be to rent a

canoe from to (cost 35) and another canoe from to (cost 25) with a

total cost of .

Your job is to plan the sequence of canoe rentals to minimize the total cost.

We can think of the problem like this: We have to return our last canoe at .

We could have rented that canoe at any of . Where-ever we

rented our last canoe, we have to solve the rest of the trip optimally from to

that point.

(i) How many different possible solutions are there ? Remember there are n hosts
,
where n can be

any integer 22 . Explain

↳ Have to rent at 2 , ,

can also rent at any subset of {22 ,
-
- - Pu -if

number of possible solution

n-2
= 2

T.ge?ziiE-TFtAftsize#nGrfseesEEs-i-fEhf Giaoossible subset -8272¥ 2
"

? I

TIAA I -

. 8112172 :

H¥tTI¥ELEft¥. . #TEE's , ¥4 'Ftx¥fI¥4 (8) t (9) t (2) = 2
"

IIHF.TK#-fITI4EStHFfTEEzFaEa44FTaE
-

'

. 2h

(2) Lee NK Ci) = min cost from 3, to Pi

MC (2) = Cost (I , 2)

Nicci) = min (Costel , i
j ,

cost (K , i) t Nk Ck) (for l 2K - i))

Cc) Complexity : o Cny

(a) [6 marks] How many diferent possible solutions are there? Remember there

are Posts, where n can be any integer . Explain your answer.

Solution: We have to rent a canoe at , and we can also rent canoes at any

subset of . Thus the number of possible solutions is the number

of subsets of … which is

Marking:

Correct answer with explanation 6 marks

Correct answer without explanation 4 marks

“Close” incorrect answer (such as) with

explanation (such as “any subset”) 3 marks

“Close” incorrect answer without explanation 2 marks

“Wayout” answer (such as) with or without

explanation 1 mark

(b) [12 marks] Let = the minimum cost of ge^ing from to

 (so is our over-all solution)

Give a complete statement of a recurrence relation for .

As a starting point, here is a base case:

Solution:

for all i > 2:

MC(i) = min (Cost(1,i),

 MC(i-1) + Cost(i-1,i),

 MC(i-2) + Cost(i-2,i),

 MC(i-3) + Cost(i-3,i),

 …

 MC(2) + Cost(2,i)

)

Marking:

The hint should suggest that the cost of geTing to = the cost of the Vnal

canoe that gets us there, plus the minimum cost of geTing to the post where we

rent that canoe.

The key concept is that the value of MC(i) depends on all the previous values.

A student whose answer captures these ideas should get at least 8/12 even if

they are unable to correctly express the recurrence relation. Giving 10/12 or

11/12 is appropriate if the answer is close to being correct.

A student whose answer shows that they understand the concept and purpose

of a recurrence relation, but not how to create one for this problem, should get

at least 6/12

A student whose answer shows only a weak understanding of recurrence

relations should get about 3/12

(c) [6 marks] Determine the computational complexity of using a Dynamic

Programming approach to solve this problem. Explain your answer.

Solution: Using the recurrence relation given, the value of MC(i) is computed by

taking the min of i-1 values, each of which is computed in constant time. The

sum of all computations for MC(n) is thus proportional to the sum 1 + 2 + … + n-

1, which is in

Marking:

Same rubric as part (a)

QUESTION 2 (24 Marks)

You have landed a job in a steel mill. The mill produces steel bars of

random lengths (all lengths are integers). Strangely, customers seem

to prefer steel bars of regular lengths. Your job is cut the raw steel

bars into shorter lengths in the most prohtable way.

More precisely, you need to cut a bar that is n metres long into

shorter pieces, each piece being metres long. Each short piece

has a proht value to the company as shown in this table:

Length 1 2 3 4 5

Proht 2 3 6 9 11

So if n = 6, you could cut the bar into a piece of length 5 and a piece of

length 1, with a total proht of 13 … or you could cut the bar into a

piece of length 4 and a piece of length 2, with a total proht of 12.

There are many other possibilities, including cu^ing the bar into six

pieces of length 1, or two pieces of length 2 and two pieces of length

1, etc.

But if n = 7, cu^ing a piece of length 5 and a piece of length 2 gives a

total proht of 14, while a piece of length 4 and a piece of length 3

gives a total proht of 15. You could also cut the bar into two pieces of

size 2 and one piece of size 3, etc. etc.

Design a Dynamic Programming algorithm to hnd the maximum

proVt obtainable from a bar of length n, where n can be any positive

integer.

Hint: remember the dynamic programming algorithm for change-

making.

Max Kofin Cn) = MAXC F t Max profit (N -5) ,

74 t Max profit (N - 4) ,

3
, t Maximo-hit CN - 3) , Eye'z§Ft2iu 53 base

{ z t Max Koh't C N - 2) , case of ?

T ' t Max profit (N - l))

Buse : Max Trott't Cl) = 9 ,

' f
- T

,

Reconstruct :

length I 2 3 4 T b 7 8 9 10

Hof't ✓ , vz vs Vy b- 06 408 Valois

(a) Design a recurrence relation for MaxProht(n), including base

case(s) and a recursive part [8 marks]

Solution: for each of the lengths between 1 and 5 except 2, the proMt

cannot be improved by cuNing. For a length of 2, we get a beNer

proMt (4) by cuNing it into two pieces of size 1. So the base cases are:

 MaxProMt(n) = ProMt(n) for n = 1, 3, 4, 5

MaxProMt(2) = 4

For n 6, the recurrence relation is:

MaxProMt(n) = max(2 + MaxProMt(n-1),

3 + MaxProMt(n-2),

6 + MaxProMt(n-3),

9 + MaxProMt(n-4),

11 + MaxProMt(n-5)

)

(Note that we can actually leave out the 3+MaxProMt(n-2) option

since it will never be optimal … but it’s ok to leave it in.)

Marking:

Base Cases: 3 marks

Recursive Part: 5 marks

As with the recurrence relation part of the previous question,

please give part marks if the student understands what is to be

done but has some errors in their solution.

(b) Specify how you will store information [5 marks]

Solution: Since the recurrence relation has only one parameter, we

can store information in a 1-dimensional array.

Marking:

Students might suggest storing the results in a hash-table – it really

ocers no advantage since we need to solve all the subproblems up

to n anyway. I would give 4 marks for this – it’s overkill.

Students might also suggest using a 2-dimensional array (I’m not

sure how!) - I would give 3 marks for this.

If a student’s answer shows that they really didn’t understand the

concept of storing the results of subproblems in an easily-

accessible way, they should get 1 mark for trying.

(c) Specify how you will order your computations [5 marks]

Solution: MaxProMt(n) depends only on values of MaxProMt(x)

where x < n. We can perform the computations from MaxProMt(1) up

to MaxProMt(n) – this ensures that all information needed for each

MaxProMt value is available when it is needed.

Marking:

Students may also suggest working from the top down

(recursively) and storing each value the Vrst time the subproblem is

encountered, then looking the values up on subsequent requests.

This is ok – it has the same complexity (just a bit more overhead).

If a student’s answer shows that they understand the question but

they cannot relate it to this problem, they should get about 2 or 3

out of 5.

(d) Explain how you will reconstruct the set of cuts from the

computed MaxProht(n) information [6 marks]

Solution: Once we know the value of MaxProMt(n), we can look at

its Mve possible predecessors (the values for n-1, n-2, n-3, n-4 and n-

5) and determine which cut length resulted in the maximum value.

This tells us what the Mnal cut was. We work back in this manner to

Mnd all the cuts.

Marking:

Students might also suggest “carrying” the optimal set of cuts

along in the table, so the solution would be immediately available,

or carrying some “most recent cut” information along in which case

the solution details can be reconstructed without doing any

comparisons. These are both completely acceptable.

An answer which is fundamentally correct but contains some errors

should get at least 4/6

If the student’s answer shows they understand what is being asked

but they can’t express a solution for this problem, they should get 2

or 3 out of 6.

 QUESTION 3 (2 Marks)

True or False:

The 2018 Award for Excellence in Dynamic Programming was won

by Netqix.

TRUE FALSE
Solution: False

Marking: 2 marks for everyone

Leetcode

Divisor Game
1 . Recurrence Relation :

Base Case:div- Game CN) = False , H = on, I
neither of them have any

choice

dir. Game CH) = (not dir - Game CN - is 11

N 7 I not div- Game CN - i) - - - - - - j

↳ Eor i LN and N% i = -- O
-↳ Eft'&L

, HI N CN > is , Eta BANFF FfaEGG LEIF
"

, x2¥¥

div - Game (N - i) #fth , TEE If # sat , #a'# FEET -T E

xf # # False div . Game (N - i) == Else EG TEI . Exists.gg

Implement :

def dir - Game CN) :

Sol - list = Ex for x in range (Ntl)]

Sol - list [o] = False 11

Sol - list [o] = False q
Base cases

i -- I

while is N :

j -- H

while j L i :

if i % j = -

- o :

if Sol- list [i - J] == False :

Sol- list [i] = True

break; N FEET - THIGHS

It -- I

it -_ I

return Sol - list

Recurrence Relation :

Base case :

1 . [] Rd kn Carnap
'
→ output =D

2 , [a , b] → if b- a > o : output b-a

if b- a 2=0 : outfit -_ o

ten cerise) > O :p of size n ,
'¥f±¥I¥x⇐ - E¥ . 47¥

buy -stock (list) = Max C Max (list E : n- I]) - listen] -7
,

-1buy - Stock (list E-- n- I]) t

Hank'tI¥FE- E.¥Ef , max roofie ix.¥¥]

implement :

def buy- stock (Price) :

Sol - list = price E :]

Sol- list [01=0

if price [I] - Hice Eo] 20

Sol- list [i] =D

else :

Sol - list El] = price El] - price -0J

i -- 2

while is len Grice) :

j -- o

currentMax = price [i] - min Carrie E : i - I] ,

while j s i :

if Sol - list E's] 7 currentMax :

Cullen-1 Max = Sol - list ED

it -- l

Sol - list [i] = Carlene Max

it -- I

return Sol - list

I# Easy

Recurrence Relation :

-

Base case :

I . [] outfit : O

2 . [a] outfit = a

3. [a , b] outfit = min (a , b)

,

'II#FIE -¥EEE¥¥ki¥¥if ten cases > 2 : of sit n zzz's
→

min- stair (cost) = min (cost En]
t min- stain (cost [: n-2$

,

mix- stain (cost [e- n - I
-

-

	365_quiz1.pdf
	365_quiz2.pdf
	365_quiz3 2.pdf
	365_quiz4 2.pdf

