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16.1-2

Suppose that instead of always selecting the first activity to finish, we instead select
the last activity to start that is compatible with all previously selected activities. De-
scribe how this approach is a greedy algorithm, and prove that it yields an optimal
solution.

16.1-3

Not just any greedy approach to the activity-selection problem produces a max-
imum-size set of mutually compatible activities. Give an example to show that
the approach of selecting the activity of least duration from among those that are
compatible with previously selected activities does not work. Do the same for
the approaches of always selecting the compatible activity that overlaps the fewest
other remaining activities and always selecting the compatible remaining activity
with the earliest start time.

16.14

Suppose that we have a set of activities to schedule among a large number of lecture
halls, where any activity can take place in any lecture hall. We wish to schedule
all the activities using as few lecture halls as possible. Give an efficient greedy
algorithm to determine which activity should use which lecture hall.

(This problem is also known as the interval-graph coloring problem. We can
create an interval graph whose vertices are the given activities and whose edges
connect incompatible activities. The smallest number of colors required to color
every vertex so that no two adjacent vertices have the same color corresponds to
finding the fewest lecture halls needed to schedule all of the given activities.)

16.1-5

Consider a modification to the activity-selection problem in which each activity a;
has, in addition to a start and finish time, a value v;. The objective is no longer
to maximize the number of activities scheduled, but instead to maximize the total
value of the activities scheduled. That is, we wish to choose a set A of compatible
activities such that ) Vg is maximized. Give a polynomial-time algorithm for
this problem.
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MAX-VALUE-ACTIVITY-SELECTOR (s, f,v,n)

letvall0..n +1,0..n + 1] and act[0..n + 1,0..n + 1] be new tables
fori =0ton
valli,i] = 0
valli,i +1] =0
valln + 1,n +1] =0
for/ =2ton+ 1
fori =0ton—1[1+1
Jj=i+I
valli, j] =0
k=j—1
while f[i] < f[k]
if f[i] < s[k]and f[k] <s[j]and
valli, k] + vallk, j] + vi > valli. j]
valli. j] = valli.k] + vallk, j] + v
actli, j] = k
k =k—1
print “A maximum-value set of mutually compatible activities has value
vall0,n + 1]
print “The set contains ”
PRINT-ACTIVITIES (val, act,0.n + 1)
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Student Number (Required)

Name (Optional)

This is a closed book test. You may not refer to any resources.
This is a 50 minute test.

Please write your answers in ink. Pencil answers will be marked, but will not be reconsidered
after the test papers have been returned.

The test will be marked out of 50.

Question 1 /25
Question 2 /20
Question 3 /5

TOTAL /50

The point is, ladies and gentleman, greed is good. Greed works, greed is right.
Greed clarifies, cuts through, and captures the essence of the evolutionary
spirit. Greed in all its forms, greed for life, money, love, knowledge has marked
the upward surge in mankind.

— Michael Douglas as Gordon Gekko,
Wall Street
(1987)



General Marking Instructions:

My general philosophy is that students should only fail a test if it is clear that
they made no effort at all to prepare for it. This sets the bar quite low for
passing. However, I believe that I set fairly difficult exams.

Please don't give 0 points for any question unless the student leaves the page
blank or writes something completely unrelated to the question. Even if what
they write is only marginally related to the proper answer, please give them 1
or 2 marks.

Students who show an understanding of the question should get at least 50%
on the question, even if they are unable to answer it.

If a student writes enough to show that they know what to do to answer the
question, even though they can't complete it, should get about 75% on the
question.

For example, suppose the question is “Show that problem X is NP-Complete.”
A student who answers, “I need to show that X is in NP, and I need to show
that all problems in NP reduce to X” or something similar should get about
50%

A student who answers, “I need to show that X is in NP, and I need to show
that instances of some known NP-Complete problem Y can be transformed in
polynomial time into instances of X, in an answer-preserving way.” or

something similar should get about 75%

A student who identifies an appropriate NP-Complete problem Y and has some
idea about the transformation should get about 80% ...

... and so on

Beyond that, take off a mark or two for significant errors or omissions. If a



student gives an answer that is completely correct except for a trivial error,
you can give full marks or take 0.5 off — it's up to you, as long as you are
consistent.



Question 1 (25 marks)

In Elbonia the only coins have value 1, 5 and 10 kronks. The inhabitants use the following
(obvious) greedy algorithm to choose coins to add up to a given target value:

Let k be the desired total value.
while k >= 10:
take a 10-kronk coin
k =%k - 10
while k >= 5:
take a 5-kronk coin
k =%k -5

take k 1-kronk coins

Prove that this algorithm always uses the smallest number of coins to add up to any target

value of k >=1.

Hint: Start by showing that it works for all k <10, then use induction.
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(Blank page if needed for answering Question 1)

Solution: Consider n <=4. The only solution is to take n 1-kronk coins, which is what the algorithm
does. Consider 5 <=n <10. The only possible solutions are A={n 1-kronk coins} and B={1 5-kronk +
n-5 1-kronk coins}. Clearly B is better (n-4 <n), and this is what the algorithm does.

IA: Suppose the algorithm finds an optimal solution whenever the target value is < n, for some n >=
10.

Let the target value be n. The algorithm starts by taking 1 10-kronk coin. We will prove that there is
an optimal solution that contains at least 1 10-kronk coin. Let O be an optimal solution for n, such
that O does not contain any 10-kronk coins. If O contains 5 or more 1-kronk coins O cannot be
optimal, since 5 of these can be replaced by 1 5-k. coin. If O contains 2 or more 5-k coins ) cannot be
optimal since 2 of these can be replaced by 1 10-k coin. Thus O contains at most 1 5-k and 4 1-k coins.
But then n <10, which is a contradiction. Thus O contains at least 1 10-k coin, so the algorithm’s first
choice is correct.

After the first choice is made, the target value is reduced to <n. By the IA, the algorithm finds an
optimal solution to the reduced problem. Applying the standard argument, let O be an optimal
solution that starts with a 10-k coin. The rest of O solves exactly the same reduced problem as the
reduced problem the algorithm solves optimally. This part of O must have exactly the same size as this
part of the algorithm's solution, so the size of the algorithm’s complete solution equals the size of O.
Therefore the algorithm's solution is optimal when the target is n.

Therefore the algorithm's solutions is optimal for all n.

Other proofs are possible and acceptable.

Students often have great difficulty giving correct proofs. Please be kind :)



Question 2 (20 Marks)

Suppose we have n concrete blocks, each with a certain thickness (i.e. block i has thickness ti).
We need to stack the blocks into a single stack. Clearly the total height of the stack will be the

sam atter what order we stack the bloilfg.__ljowever, the sum of the elevation above the
ground of the tops of the blocks will depend on the order in which we stack the blocks.

Example: if there are only two blocks, with thickness 2 and 4, then stacking the 2 on top of the
4 will give a sum of elevations of 4 + 6 = 10, but stacking the 4 on top of the 2 will give a sum

of elevations of 2 + 6 = 8.
-

2 4

2+ 6 * ()

(a) (5 marks) Create a Greedy Algorithm to find the order in which the blocks should be

stacked to minimize the average height of the e blocks.
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(b) (15 marks) Prove that your algorithm is correct.
Solution:

Observe that the set of possible solution values is non-empty and finite, and must have a minimum
element, so an optimal solution does exist.

An inductive proof similar to Question 1 is perfectly acceptable.

OR a proof along these lines:

Let the blocks be b1 <=b2 <=b3 <=... <=bn

The algorithm's solution is to stack them in this order — call this order A

Choose O from the set of optimal solutions such that O has the greatest agreement with A, starting
from the beginning.

Suppose that O differs from A. Let i be the position of the first difference. That is
A=01,b2,...0b(-1), bi, ... bn

O=bl1,b2, ..b(G-1), x, ..., bi,.. wherex !=bi (note that bi must be after x in O,
and x >= bi)

Let O'=b1, b2, ... b(i-1), bi, ...., x, ...  (ie exchange x and bi in O)

Note that the elevation of each of b1, ... b(i-1) does not change

Note that the elevation of each block on top of x in O" does not change

Note that the elevation of x is now the same as the elevation of bi in O

Note that the elevation of bi is now <= the elevation of x in O

Note that the elevation of each block between bi and x in O’ is <= its elevation in O

Thus the sum of elevations in O’ is <= the sum of elevations in O. Thus O’ is optimal, and it has
greater agreement with A than O did. Contradiction.

Therefore O does not differ from A —ie A is optimal.
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CISC/CMPE-365*
Test #2
October 17, 2014

Solutions and Marking Guide

This is a closed book test. You may not refer to any resources.
This is a 50 minute test.

Please write your answers in ink. Pencil answers will be marked, but will not be
re-marked under any circumstances.

The test will be marked out of 50.

Question 1 /20
Question 2 /10
Question 3 /20
TOTAL /50

“Do the unexpected.”
Happy Birthday to Rick Mercer



General marking philosophy: a student who gives enough of an answer to

show they understood what they were supposed to do, even if they couldn’t
do it (or made lots of errors while doing it) should get at least 50% on that

question.

Full marks should be given if a solution is sound and not missing anything
important.

Feel free to give marks like 9.5/10 to a solution that is correct but contains a
minor error.

Students may come up with solutions that are completely different from
mine but still completely correct. Correct solutions should get full marks
even if they don’t match mine.

Students should always get a few marks for trying a question. The only way
to get a 0 is to leave the page blank or write something completely irrelevant.



QUESTION 1 (20 Marks)

Suppose Merge(Listl, List2) is a built-in function that takes two sorted lists and
returns a new sorted list that combines the two original lists.

Merge(List1, List2) executes n copy operations, where n is the sum of the lengths
of the two lists being merged.

You have been given k sorted lists L1, L2, ... Lk. L1 has length n1, L2 has length
n2, etc.

Your task is to use repeated calls to Merge() to create a single list that combines
all the original lists.

For example, suppose there are three lists L1, L2, and L3, withnl =7, n2 =4,
n3 =>5. You could merge L1 with L2 (requiring 11 operations), then merge that
combined list with L3, (requiring 16 operations), for a total of 27 operations.

Alternatively you could merge L2 with L3 (9 operations), then merge that
combined list with L1 (16 operations), for a total of only 25 operations.

a) [10 marks] Create a Greedy Algorithm to merge the k lists using the fewest
possible copy operations. Express your algorithm in clear pseudo-code.

A simple version of the solution looks like this:

while k > 1:
let 1_1 and 1_2 be the two smallest lists
1 1 = merge(1l_1, 1_2)
remove 1_2 from the set of lists
k -= 1

There are many other ways to describe the process, but the key idea is to
always merge the two smallest lists.
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Any algorithm based on this idea should get most of the available marks.
Some students may decide to sort the entire set of lists in each iteration. This
is unnecessary and should cost a couple of marks. Another predictable error is
to start by sorting the lists by length, but then merge all the original lists in
pairs without including the merged lists until all the original lists have been
merged at least once. That's a bigger error since it can easily result in a non-
optimal merge order.

An answer that employs the greedy principle but is based on an incorrect sort
criterion (for example, sorting the lists in descending size order) should get at
least 5 out of 10, just for understanding the principle.



b) [10 marks] Outline the structure of a proof of correctness for your algorithm,
describing what you would do at each stage of the proof. You are not required to
fill in the details of the proof (but feel free to do so if you wish!)

,_My,sglution would look something like thj

ri. Prove that the algorithm finds a solution to the problem. I would argue that
the algorithm repeatedly merges lists until only one list remains. _§

2. Prove that the algorithm's solution is optimal, using proof by induction:

2a. Establish a base case. I would argue that when there are <= 2 files,
there is only one solution and the algorithm finds it

2b. Inductive Hypothesis: assume the algorithm finds an optimal
solution when there are < n lists, for some n

2c. Prove that the algorithm's first decision (ie which files to merge first)
is part of an optimal solution. I would argue that if the smallest
lists are not merged first, the number of operations will not be
increased if we change the merge order to make this merge first.

2d. Prove that the algorithm's solution is optimal. I would argue that
the inductive Hypothesis guarantees that the rest of the
algorithm's solution is optimal, and that this combines with the
optimality of the first decision to give an optimal solution to the
whole problem.

Marking;:

Step 1is worth 1 mark. We often gloss over this, but it is actually important
that when we talk about “the algorithm's solution” in Step 2, we are talking
about a real thing.



Assuming the student uses an inductive proof, marks should be allocated as
2a. 1 mark
2b. 2 marks

2c. 3 marks - this is the most difficult step of this proof. Students can
be quite vague about what they would actually do in this step,
and that's ok

2d. 3 marks - again, this is probably going to be difficult. If they
remember to refer to the Inductive Hypothesis, they should get
the marks.

Students may use non-inductive proof techniques as well. For example, they
may adapt the technique used for Kruskal's Algorithm. The merging of lists is
conceptually similar to the joining of subtrees by selecting edges of least
weight. This type of proof would look something like:

1. Define a “safe” sequence of merges to be a sequence that can be extended
to an optimal solution.

2. Show that the first set of merges (ie. the empty set) is safe.

3. Show that for each iteration, if the set of merges made so far is safe then
making the algorithm's next selected merge results in a larger safe set of
merges. This is a more complex argument than the inductive one, but they
don't have to give the details. As a proof structure, it is completely acceptable.

The goal of this question is to show an understanding of what a valid proof of
optimality looks like, without requiring all the details to be filled in.



QUESTION 2 (10 marks)

Professor Snope's arch-rival Doctor Phibes proposes the following Greedy
Algorithm for the Max Independent Set problem (recall: this problem asks for the
largest possible set of vertices in a graph G such that none of them are joined by
any edges):

1. Sort the vertices of G into ascending degree order (ie, vertices of lowest degree
are at the beginning of the sorted list)
2. LetS={}
3. For each vertex v in the sorted list:
if S + {v} is an independent set:
addvtoS

a) [5 marks] Assuming that the graph G is represented by a set of adjacency lists,
and that set membership can be tested in constant time, what is the complexity of
Phibes' algorithm? Explain your answer.

If the degrees are not given, we can determine all vertex degrees in O(n”2)
time. We can sort the vertices by degree in O(n*log n) time. The loop iterates
n times, and each iteration takes O(n) time, which gives O(n”"2) time for the
loop. Thus the algorithm runs in O(n”2) time.

Marking: It's ok if they assume the vertex degrees are given. 2 marks should
be allocated to giving the sort complexity as O(n*log n), and 3 marks should go
to recognizing that the loop is O(n"2). Itis also correct to say that the loop
executes in O(m) time, where m is the number of edges in the graph.

b) [5 marks] Do you believe that Phibes' algorithm always finds a maximum
independent set? Explain your answer.

No. The algorithm runs in O(n"2) time, and Max Independent Set is a known
NP-Complete problem (technically it is NP-Hard, but we have not made that
distinction in this course). If Phibes' algorithm always finds a max
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independent set, then P = NP. Since this is almost certainly not true, I don't
believe that the algorithm always finds a maximum independent set.



QUESTION 3 (20 marks)

You have n cases of maple syrup to sell to n customers. Let s, be the number of

litres of syrup in case i. Let pj be the price per litre that customer j will pay.
You can sell one case to each customer.

Example: suppose you have 2 cases containing 10 and 20 litres each, and 2
customers who will pay $5 per litre and $6 per litre.

If you sell the 10 litre case to Customer 1 and the 20 litre case to Customer 2, your
income is 10*5 + 20%6 = 170.

However, if you sell the 10 litre case to Customer 2 and the 20 litre case to
Customer 1, your income is only 10%6 + 20*5 = 160. Clearly the first solution gives
you a larger income.

a) [10 marks] Create a Greedy Algorithm that will match cases with customers
so that your total income is maximized. Express your algorithm in clear pseudo-
code.

A useful fact: ifs; >s,>0and p, >p, >0, then

* * * *
S1P1+S5, Py, > 51 P*S, Py

The basic principle is to sell the largest case of syrup to the customer who will
pay the most per litre. The algorithm is:

1. Sort the cases of syrup into descending order by size.
2. Sort the customers into descending order by price they will pay.
3. Fori=1.n:

sell case i to customer i
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Marking: as usual, if they show they understand what a greedy algorithm is
(sort followed by selection) they should get at least 50%



b) [10 marks] Prove that the first decision made by your algorithm is correct.

The first decision the algorithm makes is to match the maximum s with the
maximum p. Let these values be sm and pm.

Let O be any optimal solution, and let sm be matched with px in O and let pm
be matched with sy in O. If px = pm, then we can “swap” px and pm without
affecting the total value. This gives a new optimal solution that matches the
algorithm's first choice and we are done.

Similarly, if sy = sm, we can swap sy and sm without reducing the value,
giving a new optimal solution that matches the algorithm's first choice.

The remaining possibility is fhat px != pm and sx != pm. Since sm and pm are
the maxima in their respective sets, we know px < pm and sx < pm.

Applying the useful fact, we see that sm*pm + sy*px > sm*px + sy*pm, so
“swapping” px and pm in O would increase the value ... but that isn't possible
because O is optimal. Thus it must be the case that px = pm or sy = sm and we
can modify O to match the algorithm's first decision without affecting the
value.

Marking: This is the most difficult question on the test — marking can be quite
generous. If they show that they understand the concept of taking an optimal
solution and showing that it either contains the algorithm's first choice or, if it
doesn't, it can be modified into another optimal solution that does match the
algorithm's first choice, they should get most of the marks for this question.
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The point is, ladies and gentleman, greed is good. Greed works, greed is right.
Greed clarifies, cuts through, and captures the essence of the evolutionary
spirit. Greed in all its forms, greed for life, money, love, knowledge has marked
the upward surge in mankind.

— Michael Douglas as Gordon Gekko,
Wall Street
(1987)



General marking philosophy: a student who gives enough of an answer to
show they understood what they were supposed to do, even if they couldn’t do
it (or made lots of errors while doing it) should get at least 50% on that

question.

Full marks should be given if a solution is sound and not missing anything
important.

Feel free to give marks like 14.5/15 to a solution that is correct but contains a
minor errot.

A student should only get 0 on a question if they made no attempt to answer it
at all.



Question 1 (30 Marks)

You have won the contract to install Wi-Fi nodes along a very straight and sparsely populated
stretch of road which runs due east and west across the tiny nation of Occiput. There are N
houses along the road — each house is identified by its distance from the east end of the road.
Each house is located right on the road, not set back from the road. Your assignment is to
install Wi-Fi nodes along the road so that each house is no more than 1 kilometre from a
node. You can install nodes anywhere along the road — the nodes do not have to be located at
houses. You want to install as few nodes as possible.

o o o 00 { N J L N 3 L J
o I e | 6 I o ] o ] o

This figure illustrates an instance of the problem and one possible solution. The black dots
represent houses, the white dots represent Wi-Fi nodes, and the grey bars show the “1 km in
each direction” range of each Wi-Fi node. The solution shown is not optimal.

a) (10 marks) Give a Greedy Algorithm to find an optimal (minimal) set of locations for the
Wi-Fi nodes. (Hint: consider the west-most house — how far east of that house can you place
the first node?)

sort the houses in west-to-east order
while at least one house is not covered:
let x be the west-most uncovered house
place a Wi-Fi node exactly 1 km east of house x

or equivalently:
sort the houses in west-to-east order
for h in the sorted list of houses:

if h is not covered by a previously placed Wi-Fi node:

place a Wi-Fi node exactly 1 km east of h

Marking: the algorithm can be run from east-to-west without affecting its correctness.
Deduct 1 mark if the student forgets to sort the houses.
For algorithms that are greedy but do not find an optimal solution (for example, “place the

first node where it can cover the most houses” ) give about 7 marks. For algorithms that
aren't really greedy (for example “place a Wi-Fi node right on every house”) give about 5
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marks. For algorithms that do not find a feasible solution, give about 4 marks.



b) (10 marks) Prove that the first choice your algorithm makes for a node location is correct
(i.e. that there is an optimal solution that contains this location as its first location).

The algorithm'’s first choice is to place a node 1 km east of the west-most house. Call this location al.

Let O be an optimal solution, and let 01 be the west-most node in O. 01 cannot be east of al, since then
the west-most house would not be covered by any node in O. Thus either 01 = al, or 01 is west of al.
If o1 = al then al is contained in an optimal solution. If 01 is west of al, then a node at al will cover
all the houses that a node at 01 covers. Thus we can remove 0l from O and replace it with al. This
gives a feasible solution with the same cardinality as O, ie an optimal solution that contains al.

Thus there is an optimal solution that contains al.

Marking: The key idea here is that the algorithm's first choice can be substituted into any
optimal solution that doesn't already contain it. If the student has that idea, they should
get at least 6 marks, even if they couldn't come up with a proof.

c) (10 marks) Complete the proof that your algorithm finds an optimal solution.

Clearly if there is only 1 house, any optimal solution contains one node. The algorithm finds an
optimal solution in this base case.

Assume the algorithm finds an optimal solution when there are <= n houses.

Suppose there are n+1 houses. Let A =1{al, a2, ... as} be the algorithm’s solution, and let O = {al, 02,
03, ..., ot} be an optimal solution, in west-to-east order, containing al (we know that such a solution
exists). We need to show 1Al = 10|

By our inductive assumption, {a2, ..., as} is an optimal solution to the problem of covering all the
houses not covered by al. But this is exactly the same problem that is solved by {02, ..., ot}. Therefore
1{a2 ....as}l <= {02 .... ot}|. Therefore |Al <= 10I. 1Al <10l is impossible since O is optimal.
Therefore |Al = 101, so A is optimal too.



Marking part ¢): Induction is a very natural way to prove this. The base case is worth 3
marks, and the inductive part is worth 7. If they have the basic idea of induction but don't
give a sound proof, they should still get at least 6 marks.

An alternative, non-inductive proof might look like this:

Let A ={al, a2, ...., as} be the algorithm's solution, and let O ={01, 02, ...., ot} be an optimal
solution. Using the argument already given, we can see that O' ={al, 02, ...., ot} is also an
optimal solution. Now we can make a similar argument that a2 can be used to replace 02,
giving O" ={al, a2, 03, ...., ot} is a feasible solution with the same cardinality as O, so O" is
also optimal. Repeating this argument, we replace all the o's with a's, always maintaining
optimality. We end up with A being optimal.



Question 2 (20 Marks)

You have landed a prestigious new job, hiring guards for the National Prison for Disgraced
Politicians (a very crowded place). The prisoners must be guarded from 6 AM to 6 PM.

There are a total of n guards, but each guard is only available for a specific time period during
the day: Guard G; will work during the interval [s;, fi], where 0 <=s; < f; <=24. Each guard is
payed the same amount, regardless of how long their shift is. Since you are paying them out
of your own salary, your goal is to hire as few guards as possible.

You may assume that there is a feasible solution — there are enough guards to cover the whole
day.

(a) (10 marks) Give a Greedy Algorithm to find an optimal solution (i.e. minimal number of
guards) subject to the constraint that there must be at least one guard on duty at all times
between 6 AM and 6 PM. The total time period covered may start before 6 AM and may end
after 6 PM.

In pseudo-code:

Sort the guards by their start times (earliest first)
Time_covered = S-1
index =1
while Time_covered < F:
best_guard = nil
best_guard_end =0
while Singex <= Time_Covered + 1:
if findex > best_guard_end:
best_guard = index
best_guard_end = findex
index ++
hire guard Geest_guara  # ie add Guest_guard to the solution
Time_covered = best_guard_end

in English:
Sort the gquards by their start times (earliest first).
From the guards that cover S, choose the one with the latest finish time. Continue with that time + 1
as the new start time.
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(b) (10 marks) Explain why your algorithm would not work if there is an added constraint
that each guard has a first name (Kim, Pat, Kelly, etc) and you cannot hire two guards with
the same first name.



We never have to go back and look at a guard twice because we only reject a guard if we have found a
better one (ie one who covers the same required start time and whose end-time is later).

Marking: Similar to Question 1 (a). The algorithm can be presented descriptively or in
code or pseudo-code.

Students are not required to give any justification for their algorithm. I included the
“never have to go back” comment for the benefit of the reader.

Note: students may have interpreted the question to mean that when guards relieve each
other, they must overlap (eg if the first guard ends her shift at time x, then the second must
start no later than time x-1). This is a reasonable interpretation and should not be
penalized. It doesn't affect the structure of the algorithm, just the criterion for deciding if a
guard can feasibly be added to the solution.



(b) (10 marks) Explain why your algorithm would not work if there is an added constraint
that each guard has a first name (Kim, Pat, Kelly, etc) and you cannot hire two guards with
the same first name.

Suppose there are two guards named Kim — call them Kim1 and Kim2. The algorithm’s first choice
might be Kim1, and then on a later iteration, the best — or perhaps the only — choice might be Kim2. If
the algorithm chooses Kim2, it violates the constraint — if it doesn't choose Kim2, it may not find a
solution at all.

Thus we can construct an instance where the algorithm fails.

Marking: the key idea is that for a greedy algorithm to be successful, its choices should be
based on purely “local” information. It should not be the case that the optimal first choice
needs to consider future optimal - or essential — choices.

Students can explain this clearly or give an example for full marks.

An alternative (and fully acceptable) demonstration of the failure would be to show that
proof by induction would not be possible. We can assume that the algorithm makes an
optimal first choice and that it finds an optimal solution to the reduced problem after the
first guard is chosen, but that does not guarantee that the algorithm's first choice and the
optimal solution to the reduced problem can be combined - as described above, the
constraint on names might be violated.

Give part marks in the range 7 to 10 for answers that come close to giving a good
explanation or an example of how the algorithm could fail.

Give marks of 5 or less for answers that show some understanding but cannot identify (in
any clear way) how the algorithm might fail.



Bonus Question (0 marks):

What is the meaning of this figure?
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General marking philosophy: a student who gives enough of an answer to show they understood what
they were supposed to do, even if they couldn’t do it (or made lots of errors while doing it) should get at
least 50% on that question.

Full marks should be given if a solution is sound and not missing anything important.

Feel free to give marks like 9.5/10 to a solution that is correct but contains a minor error.

Students may come up with solutions that are completely different from mine but still completely
correct. Correct solutions should get full marks even if they don’t match mine.

Students should always get a few marks for trying a question. The only way
to get a 0 is to leave the page blank or write something completely irrelevant.



Question 1 (12 Marks)

(a) [6 marks] Show the bitstring codes that result from applying the Huffman
Coding algorithm to a string containing the following set of letters with the
indicated frequencies:

a b C d e t g h

1 1 2 3 5 8 13 21

Solution: most students will probably draw the tree to explain how they get
the final bitstrings. The tree will probably look something like this

a b c d e f g h
\ / / /] / / /
ab [ / / /

\/ / / /
abc |/ / / /
\ /] / / /
abcd / / / /
\ / / /
abcde / / /

\ / /
abcdef / /
\ / /
abcdefg /
\ /
abcdefgh

with the edges labeled “0” and “1” . It is not necessary to label the internal
vertices. If the “up and left” edges are “0” and the “up and right” edges are “1”
this gives

a: 0000000  b: 0000001 c: 000001 d: 00001 e: 0001 f: 001 g: 01 h:1



Question 1 (12 Marks)

(a) [6 marks] Show the bitstring codes that result from applying the Huffman
Coding algorithm to a string containing the following set of letters with the
indicated frequencies:




(b) [3 marks] Is your answer in (a) unique? Why or why not?

No, it is not unique. Exchanging the “0” and “1” labels on any pair of edges
that both go “up” from a single vertex with give an equivalent code. It is also
true that swapping all “0” and “1” edge-labels will give an equivalent code.

(c) [3 marks] Generalize your answer from (a) to describe an optimal prefix-
property code when the letter frequencies are the first n Fibonacci numbers.
Libonacci numbers.

The highest frequency letter gets a bitstring of length 1. The second highest frequency letter
gets a bitstring of length 2, and so on down to the last two letters, which both get bitstrings
of length n-1. The bitstrings must obey the prefix-property rule.

If a student does not know the definition of the Fibonacci sequence ...if they extrapolated
from part (a) in a plausible fashion and gave a decent answer, that’s ok
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(c) [3 marks] Generalize your answer from (a) to describe an optimal prefix-
property code when the letter frequencies are the first n Fibonacci numbers.




Question 2 (25 marks)

Suppose you have K dollars in your pocket, and you want to buy Hallowe’en
candies to give to trick-or-treaters. At the candy shop there are n small buckets
of different types of candy. Each piece of candy is priced at $1, so you can only
buy a maximum of K pieces of candy. For each type of candy, you have a
satisfaction value that you experience from giving one piece of that candy to a
trick-or-treater.

(a) [10 marks] Suggest a Greedy Algorithm to maximize the total satisfaction
you will experience when you give away all the candy that you buy.

Sort the candies in descending order by their satisfaction value.
R=K
while R > 0 and there are still some candies left to buy:

buy a candy with the highest satisfaction value

R=R-1

or

Sort the candies in descending order by their satisfaction value.

R=K

while R > 0 and there are still some candies left to buy:
buy as many candies as possible with the highest satisfaction value
R =R - the number of candies bought on the line above this one
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(b) [5 marks] Prove that your algorithm’s first choice is optimal (i.e. that there is
an optimal solution that makes the same choice)
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(b) [5 marks] Prove that your algorithm’s first choice is optimal (i.e. that there is
an optimal solution that makes the same choice)

Consider an optimal solution that does not include as many of the highest satisfaction value
candies as the Algorithm’s solution. Then we can replace some equal-or-lower value candies
in the optimal solution, without lowering its total value, using the left-over highest value
candies. Thus there is an optimal solution that matches the number of highest-value candies
in the Algorithm’s solution.

(c) [10 marks] Complete the proof that your algorithm finds an optimal solution
to the problem.

Continuing the argument above, we can start with an optimal solution that
matches the Algorithm’s choice with respect to the highest-value candy. Using
the same reasoning, we can find an optimal solution that also matches the
Algorithm’s choice with respect to the second-highest-value candy, and so on.
Eventually we reach an optimal solution that is identical to the Algorithm’s
solution ... hence the Algorithm’s solution is optimal.

Proof by induction is also a reasonable approach.

Marking: students seem to have interpreted this problem in a variety of ways.
For example, some students assumed the buckets are sealed and you can’t
pick individual candies out. This obviously changes the answer, but they can
still come up with a greedy algorithm (although it won’t always give the
optimal solution because this interpretation makes the problem equivalent to
the 01 Knapsack Problem). Other students assumed that the small buckets
contain infinite numbers of candies (?) ... which also affects the details of the
answer, but not its principle. If they give an answer that is correct relative to
their interpretation, that’s ok.



(b) [5 marks] Prove that your algorithm’s first choice is optimal (i.e. that there is
an optimal solution that makes the same choice)
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Question 3 (12 Marks)

Is Dijkstra’s Algorithm for finding least-weight paths in a graph with positive
edge-weights a Greedy Algorithm? Why or why not?

Case for Yes: on each iteration, the algorithm chooses the best option available
to it. It never looks forward to anticipate future choices or back to revisit
previous choices. This is the essence of the Greedy strategy.

Case for No: Greedy algorithms are supposed to start with a sort. Dijkstra’s
Algorithm does not start with a sort ... so it is not a greedy algorithm

Marking: I'm willing to accept either “Yes” or “No” for this ... but they have
to give a decent reason for their answer.



Question 4 (1 mark)

Consider the following Greedy Algorithm for CNF-SAT:

sort the boolean variables in the expression in descending order based on
how many terms they occur in

for each boolean variable, set it to True unless its negation has already
been set to True

True or false: If E is a satisfiable expression in CNF form, this algorithm will
always find a truth assignment that satisfies E

FALSE

The correct answer is False
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Student Number (Required)
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This is a closed book test. You may refer to one 8.5 x 11 data sheet.
This is a 50 minute test.

Please write your answers in ink. Pencil answers will be marked, but will not be
re-marked under any circumstances.

The test will be marked out of 50.

Question 1 /16
Question 2 /12
Question 3 /20
Question 4 /2

TOTAL /50

“There is a very fine line between loving life and being greedy for it.”

— Maya Angelou



QUESTION 1 (16 Marks)

Suppose we have a computer which is based on the trinary system,
rather than binary. The fundamental unit of memory of such a
system is called a trit (instead of bit). We represent everything with
tritstrings consisting of 0’s, 1’s and 2’s. In such a system, the
standard representation of the letter “A” might be “102210”, “B”
might be “102211” etc.

Part A : [8 Marks]

Adapt the Huffman Coding scheme to the trinary system, and give a
clear description of your modified algorithm for constructing variable
length trinary codes. You are not required to prove that your
algorithm produces optimal trinary codes.

Solution:

Sort the characters in the source document according to their frequency (same as
the original algorithm)

Build a trinary tree as follows:

choose the three characters with the lowest frequency, add a parent that has
their combined frequencies, and put a 0, a 1 and a 2 on the edges joining them to
their parent.

Remove the three characters from the set and add their parent (as a new
character) to the set.

Repeat until there is a single root that represents the combination of all the
characters.



QUESTION 1 (16 Marks)

Suppose we have a computer which is based on the trinary system,
rather than binary. The fundamental unit of memory of such a
system is called a trit (instead of bit). We represent everything with
tritstrings consisting of 0’s, 1’s and 2’s. In such a system, the
standard representation of the letter “A” might be “102210”, “B”
might be “102211” etc.

Part A : [8 Marks]

Adapt the Huffman Coding scheme to the trinary system, and give a
clear description of your modified algorithm for constructing variable
length trinary codes. You are not required to prove that your
algorithm produces optimal trinary codes.
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Marking:

Sorting the set: 2 marks
Choosing the three smallest: 2 marks
Adding 0, 1, 2 to their codestrings: 2 marks

Replacing them by a combination
item with their summed frequencies: 2 marks

A student whose answer shows a good understanding of the basic
Huffman algorithm should get at least 4/8, even if they make errors in
translating it to the trinary version.

They are not required to present the algorithm in terms of building a
tree. They can describe the process as “add 0, 1, 2 respectively to the
codestrings for the characters represented by the three lowest
frequency items”



Part B : [8 marks]

Show the application of your modified algorithm to the following set
of letters, where each letter is followed by its observed frequency.
Show the tree and codes that your algorithm constructs:

A |5

B |10

C |15

D |24

E |29

F_ 140 Codestrings:

G |70

H |75 A: 000
B: 001

I _]100 C: 002
D: 01
E: 02
F: 10
G:11
H: 12
I: 2




Part B : [8 marks]

Show the application of your modified algorithm to the following set
of letters, where each letter is followed by its observed frequency.
Show the tree and codes that your algorithm constructs:

E éﬁl/(’//

£8 0

5

10

15

24

29

40

70

75

“Ee e

100




Marking:

The assignment of 0,1 and 2 to the edges of the tree are arbitrary so
the codestrings they construct may be very different than mine, but
the lengths should be the same (“I” should have a codestring of
length 1, etc.)

It is important to correctly extract the codestrings from the tree (or
alternative representation). Some students may read the codestrings
from the bottom up rather than from the top down, getting (for
example) “100” for “B”. This breaks the prefix rule and makes the
code unusable.

Showing the steps of the execution: 3 marks
Showing the codestrings correctly: 5 marks
Showing the codestrings incorrectly

(see explanation above): 2 marks



QUESTION 2 (12 Marks)

Suppose we have a set of n activities, each with a known start time s;
and finish time f; . The activities may overlap. Our task is to assign

the activities to rooms so that each room contains a non-overlapping
subset of the activities. The goal is to use as few rooms as possible.

A2

A3

Al

A4

In this example we need two rooms: one room for Al and A3 and the
other room for A2 and A4.

A greedy algorithm for this problem: sort the activities based on start
time, then assign activities to rooms. Use a new room only if the next
activity overlaps with activities in all existing rooms.

Sort the activities based on start time and renumber them so that
51 <82 < -0 < sy
Room_set = {1}
Busy__until[1] = 0
fori =1 to n:
if there is any room x in Room_ set with Busy_ until[x] < §; :
assign Activity i to Room x
Busy_ untillx] = f;
else:
add a new room to Room__set
assign Activity i to the new room
set Busy_ until[new room] = f;

i_j\/& \',\—Q OfJ"\N’ S\l,%‘fllb\« }i‘f\% 2 ’t\g(:;z
ool Bk Aeis £ 18\ 4 il 2 o9 Fia- W

Question 2 continues on the next page.



Suppose the Algorithm puts Activities 1,2, .. .7 into Room 1 and then
puts Activity ¢ 4 1 into Room 2.

Prove that there is an optimal solution that does exactly the same
thing.

Hint: Let O be an optimal solution ...
Solution:

Let O be an optimal solution, and suppose it does something
different with the first i+1 Activities. Renumber the rooms so that
Activity 1 is in Room 1. This does not change the number of rooms
so this renumbered solution is still optimal. Call it O’

Let Activity j+1 be the first Activity that O" does not put in Room 1.
(That is, O’ puts Activity 1, 2, ..., j in Room 1.) If j=1i, then
renumbering the room that contains Activity i+1 to be Room 2
exactly matches the algorithm’s action. If j # i then it must be true
that j <i, since if j > i then the algorithm would not have put
Activity i+1 into Room 2.

Let the Room containing Activity j+1 be Room k. Swap Activity j+1
and all following activities in Room k with all activities in Room 1
that follow Activity j. Because the earliest activity being swapped
into Room k must have start time > s;., this is a feasible solution,
and since it doesn’t use more rooms it is also optimal.

This new optimal solution agrees with the Algorithm’s solution
more than the previous one did. We can repeat this swapping action
until all of Activity 1, ... Activity i are in Room 1, and Activity i+1 is
in Room 2. This is exactly what the algorithm does.



Marking:

The main thing to look for here is whether the student understands
how to approach this type of problem. The details are less critical.

Recognizing that our goal is to take an arbitrary
optimal solution and manipulate it to create
another one that matches the algorithm’s choices: 4 marks

Recognizing that no optimal solution can put
Activities 1, 2, ..., i+1 into the same room: 4 marks

Recognizing that we can swap Activities (or groups
of Activities) between rooms without creating
time-conflicts: 4 marks

Please give part marks to answers that show
partial success with these aspects of the proof.

If a student takes a completely different approach and you are not
sure how to grade it, please contact me.



QUESTION 3 (20 marks)

Let S = {s1, 59, ..., s, } be a set of n positive integers — possibly
containing duplicates. Let k be a positive integer.

Problem: Find a maximum-size subset A of S that has sum <k
For example, let S=1{7,4,12,1, 3, 18,1, 240, 10} and k=19

The solutionis A =1{7,4, 1, 3, 1} (in any order) which has size 5.

Part A : [6 marks]

Create a Greedy Algorithm to solve this problem. State your
algorithm in clear pseudo-code.

Solution:

Sort the values into ascending order, so s1 < 55 < ...s),

total =0
i=1
solution ={} # empty set

while total + s; <=k:
total = total + s;
i=1+1
solution.append(s;) # or “add s; to the solution”



QUESTION 3 (20 marks)

Let S = {s1, 52, ..., 5, } be a set of n positive integers — possibly
containing duplicates. Let k be a positive integer.

Problem: Find a maximum-size subset A of S that has sum <k

For example, let S=1{7,4,12,1, 3,18, 1, 240, 10} and k=19

The solutionis A =1{7,4, 1, 3, 1} (in any order) which has size 5.

Part A : [6 marks]

Create a Greedy Algorithm to solve this problem. State your
algorithm in clear pseudo-code.
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Marking:

Sort: 2 marks
Loop: 4 marks

No penalty if they forget to initialize the solution be empty —it’s an
important implementation detail but not an essential conceptual part
of the algorithm.

If a student gives an incorrect algorithm, but remembered that
Greedy Algorithms always sort the set then iterate through the sorted
list, they should get 4/6



Part B : [14 marks]

Prove that your algorithm finds an optimal solution. Use any valid
proof technique.

Solution:

Let A be the algorithm’s solution and let O be any optimal solution.
Sort O into ascending order.

If A and O are identical, then A is optimal.

Suppose A and O are equal up to and including s, but differ in the
next position. The algorithm fills the next position with s, so O
must fill the next position with s, where x > i+1. This implies

Sz > Si+1, SO we can remove s from O and replace it with s,
without pushing the total over k. This new solution has the same
cardinality as O, so it is also optimal, and it has fewer differences
from A.

We can repeat this sequence until we arrive at an optimal solution
that has 0 differences from A — so A is optimal.

TL;DNR wversion of this proof:

Let O be any optimal solution that does not contain the smallest
value in the set. Swap the smallest value for any value in O. The
result is still optimal. Continue until all the smallest values have
been swapped in. This matches the algorithm’s solution.



Alternative Proof: Induction on the size of the set of values.

Base case: If |S| =0, then the empty set is the only solution (and
thus it is the optimal solution.

Inductive Hypothesis: Assume the algorithm always finds an
optimal solution when the size of the set is <n, for somen > 0.

Let |S| = n+1, and assume the set has been sorted into ascending
order. If s>k, there is no nonempty subset that sums to <k, and
the algorithm correctly solves this case.

Assuming there is a non-empty solution, let A be the algorithm’s
solution and let O be any optimal solution that does not contain s;.
Replace any element of O with s,. The result is still an optimal
solution (call it O’), so the algorithm’s first action is correct. This
reduces the problem to a set of size n with a target value of k — s;.
By the inductive hypothesis, the algorithm finds an optimal solution
to this reduced problem.

O’ also contains a solution to this same subproblem. This implies
|Al =10l so A is optimal.



Marking:

The marking method here should be similar to Question 2, but it will
depend on the proof type chosen by the student.

For the “eliminate differences” approach the essential concept is
summarized in the TL;DNR version. If they express this idea clearly
they should get at least 10/14

Example of an answer which is insufficiently clear:

“We should never take a larger value when a smaller one is

available”. I would grade this at 7/14. The idea is there but it is not
fully developed.

For the inductive approach, use this grading scheme

Base case: 4 marks
Inductive Hypothesis: 3 marks
Inductive Step: 7 marks

In each part, give partial marks for proofs that have the right ideas
but don’t express them clearly.

Note that the base case can be set up with sets of size 1 rather than
with the empty set.



QUESTION 4 (2 Marks)

True or false:

David Huffman was a pioneer in the field of mathematical origami.

TRUE

Solution: True

Marking:

True 2 marks
False 2 marks
No answer 2 marks

Yes, everyone gets 2 marks for this question. Apparently some
people think I am trying to trick them with the different font sizes
for TRUE and FALSE.
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— Let LCSL(i,j) be the length of the longest common subsequence of P[1..i] and Q[1..j]
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Now our recurrence looks like this:

To compute LCSL(, j):
If p; == gqj
LCSL(, j) =1+ LCSL(i-1, j-1)
else:
LCSL(, j) = max(LCSL(i-1, j) ,
LCSL(, j-1),
LCSL(i-1, j-1) )
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CISC/CMPE-365*
Test #3
November 1, 2013

Student Number (Required)

Name (Optional)

This is a closed book test. You may not refer to any resources.
This is a 50 minute test.

Please write your answers in ink. Pencil answers will be marked, but will not be reconsidered
after the test papers have been returned.

The test will be marked out of 50.

Question 1 /30
Question 2 /20
TOTAL /50

I guess the issue for me is to keep things dynamic.

Robert Downey, Jr.



Question 1 (30 marks)

The President of Elbonia, impressed by your ability to stack concrete blocks, has put you in
charge of packing a large container full of national treasures which he plans to take with him
for “safe-keeping” on his upcoming trip to Switzerland.

The container can hold at most k kilograms. Each treasure ti has a value vi and a mass mi.
Your task is to find the most valuable combination of treasures that will fit in the container.

For example, if k = 10 and the table of values and masses looks like this

t1 \\tlz / t3 4 t5

Value 210 kronks 200 k. 150 k. 75 k. 24 k.
Mass 8 5 6 3 4
1)
\I Q7 ) o~
then the optimal solution is to take t2 and ts N v
— = J

Create a dynamic programming solution for this problem. Here is a definition that may be
useful:

C

Let MV(i,x) be the value of the' most valuable subset 0fEt1 ti}lsuch that the total mass of the
selected treasures is SEX —=

a) Characterize the solution as a sequence of decisions

b) Show that the problem satisfies the Principle of Optimality

C) Give a complete recurrence relation for the problem
d) Describe the order in which you will compute the solutions to sub-problems
e) Explain how you will extract the details of the optimal solution

(Write your answer on the next page)
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Question 2 (20 Marks)

The President of Elbonia has been arrested on his way to the airport, and as his assistant you
are wanted for questioning. Your escape plan is to walk from Elbonia to the neighbouring
country of Dorkis. The paths between the two nations form a rectangular grid with n rows
and m columns. You are at the top left corner of the grid and your destination is at the
bottom right corner. All of the horizontal path segments run left-to-right, and all of the
vertical segments run top-to-bottom. Each path segment has a value attached to it that

represents the time required to walk that segment.
i

So far, this is identical to the problem we examined in class. Here is the difference: some of
the path intersections are known to have toll-booths, charging 10 kronks for passage. You
only have k 10-kronk coins in your pocket, so any path that includes more than k toll-booths
cannot be used. (For example, if k =3, you can pass through up to three toll-booths, but no

more.)

You may assume that there are no toll-booths along the top edge, or along the right-hand side

of the grid, so it is possible to reach the goal without passing through any toll-booths at all.
Your mission is to find the fastest route that passes through at most k toll-booths.

Here is part of a recurrence relation:

Let P(i,j,x) be the length of the shortest path from the starting point (0,0) to intersection (i,j),

passing through at most x toll-booths.
ARl

a ﬁ }Z’jé, :W%’L% Riom -3

f-Oad J
7 A ¥ o Ak

P(i,j,0) = infinity if intersection (i,j) is a toll-booth

N\

=min{P(j, j-1, 0) + w(edge from i j-1 to i j),

P(i-1, j, 0) + w(edge from i-1,j to i,j)} if intersection (i,j) is not a toll-booth
forx>0
P(i,j,x) = min{ P(i, j-1, 2:}) +w(edge from ij-1 to ij),
PG-1, 5, \g) +w(edge from i-1,j to i,j)} if intersection (i,j) is a toll-booth
=min{ P(i, j-1, x) + w(edge from ij-1 to ij),

P(i-1, j, x) + w(edge from i-1,j to ,j)} if intersection (i,j) is not a toll-booth



a) Complete this recurrence relation by adding appropriate base cases. For convenience,

here is the recurrence again:

P(i,j,0) = infinity if intersection (i,j) is a toll-booth
= min{P(j, j-1, 0) + w((i,j-1),(ij)),

P(i-1, j, 0) + w((i-1,j),(i,j)) } if intersection (i,j) is not a toll-booth

forx>0
P(ijx) = min{ P(i, j-1, x-1) + w((i,j-1),(i,})),
P(i-1, j, x-1) + w((i-1,j),(i,j))} if intersection (i) is a toll-booth
=min{ P(i, j-1, x) + w((i,j-1),(i)),

P(i-1, j, x) + w((i-1,j),(i,j))} if intersection (i,j) is not a toll-booth

Bue Cuce

€L 3, A) = TLi-t,d, x) % w Cli-tedy , Chi) i 3=
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b) Explain the order in which you will compute the solutions to sub-problems.
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Question 1 (30 marks) —7 \/7 2 $% 45 -1 Luse cose TX ok

After graduation you find yourself working in a steel mill, ironically named Dynamic
Industries. The mill produces steel bars in a variety of lengths and the bars are then cut into
shorter lengths for sale. Your job is to determine how to cut the bars so as to maximize the
total sale value. Ho hum, we did that in 365 with Prof. Whats-his-name. But wait! This is
different! Now you don't have unlimited access to the bar-cutting saw. For each bar, you are
told the length of the bar and also the maximum number of cuts you can make.

For example, suppose the sale value for pieces of length 1 through 5 are given by this table:

Length 1 2 3 4 5

Value 2 3 5 7 8

If you are given a bar of length 5 and you are allowed to make 3 cuts, then you can make
0 cuts, for a value of 8, or
1 cut (perhaps into a 1 and a 4, for a value of 9) or
2 cuts (perhaps a 1 and two 2's, for a value of 8) or
3 cuts (perhaps three 1's and a 2, for a value of 9).
Consider the following recurrence relation, which is based on the “leftmost cut” method:

Let MV (n,k) represent the optimal value we can get from a bar of length n, using no more
than k cuts.

MV (n,0) = Value(n) #no cuts allowed
MV (1,k) = Value(1) #can't subdivide a piece of length 1
MV (n,k) = max{ Value(n), #no cut

Value(1) + MV(n-1,k-1), #leftmost cut at 1

Value(2) + MV(n-2,k-1), #leftmost cut at 2

Value(3) + MV(n-3,k-1), #etc.

Value(n-1) + MV(1,k-1)



a) (7 marks) Show that the problem satisfies the Principle of Optimality.

¢

Suppose that in some optimal solution S, the leftmost cut is at i. Then the remaining set of cuts in S
are a solution to the reduced problem of cutting a bar of length n-i, using at most k-1 cufs..

Suppose there is a better solution to this reduced problem. Then we could combine this better solution
with the leftmost cut of S to get a solution that is better than S, which contradicts the optimality of S.

Thus the embedded solution to the subproblem of cutting a bar of length n-i using at most k-1 cuts is
optimal. Thus the Principle of Optimality is satisfied.

Marking: the key concept is that an optimal solution must contain only optimal solutions
to subproblems. If the student shows that they understand this, they should get at least 4/7

b) (7 marks) Design a table to hold information about optimal solutions to subproblems.

Use a 2-dimensional table MV'T with “lengths”: 1..n as labels on the rows and “number of cuts
allowed”: 0..k as labels on the columns (or vice versa). Use MV'I[i,j] to store MV(i,j) — ie the optimal
value of a bar of length i, using at most j cuts

Marking: they should remember that they need a column (or row, if they transpose the
table) for “0 cuts” - take off a couple of marks if they forget this. Again, the key concept is
creating a table to store results so that nothing needs to be calculated twice. If they show
understanding of this, they should get at least 4/7

Some students may choose to store more information in the table, such as the cuts that
have been used to achieve the optimal solutions. This is not a problem.



c) (7 marks) Describe the order in which you will compute the solutions to subproblems, and
why.

Observe that MV(1,j) = Value(1) for all j. Thus we can fill in the first row of the table immediately.
After this, fill in the table row by row, since each MV value depends only on values from previous
rows.

An argument can also be made for filling in the values column by column, since each MV value only
depends on values from the previous column.

Marking: the key concept is computing solutions to subproblems in a logical order so that
when MV(i,j) is to be computed, all the relevant smaller problems have already been
solved. Understanding that is worth 4/7, even if they are unable to give an effective order.

Some students may take a recursive, top-down approach. This is ok, although it makes it
difficult to describe the exact order in which subproblems will be solved. In this case the
answer will probably be that subproblem solutions will be be computed in an “as-needed”
order, which is pretty much self-explanatory.
o X , 4k Je iteate ﬁﬁﬁlﬁqﬁﬁﬁﬂé
p Wy % AT k15¢ r
- 7 AbeE muT ol HpEAEGR
d) (7 marks) Explain how you will extract the details of the optimal solution.

Once the table is full, the maximum possible value obtainable will be the value in MVT[nk] (the
bottom right hand corner of the table). Starting from this point, we can re-evaluate all the possible
predecessors of this table element, and determine which one led to the final optimal value. This gives us
the position of the final cut. Then we repeat the process to work back from there, until we have
determined each cut in the optimal solution.

Alternatively, every time we compute MVT[i,j], we could record the option that gave us this value.
Then we can trace back from MVT[n,k] without having to re-evaluate the possible predecessors.

Marking: Students' answers will depend on what information they choose to store in the
table, but they should give a good explanation of whatever is appropriate for the table they
described. If they are all at sea but they give enough of an answer to show they
understand the idea of tracing back from the final table entry, they should get at least 4/7



Question 2 (8 Marks)

Let S be a set of n positive integers, with n >=1

Let k be a positive integer such that k <= 1000

What is the computational complexity of solving the Subset Sum problem on S and k, using
the algorithm that we developed in class?

The algorithm we used creates a table that is n*k in size, and fills each element of the table in constant
time. Since we know k <= 1000, the table has <= 1000*n elements. Filling them in takes O(n) time.

Marking: if they state that it is polynomial but not O(n), they should get 5/8. If they state it
is not polynomial because Subset Sum is NP-Complete, they should get 2/8.

Lubpget Som LN KD Blady ~1 ek 6 Ausy
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Question 3 (14 Marks)

You are visiting Aggravatia, where the currency is based on coins of value {1, 4, 7, 9}. Nobody
in the country has been able to solve the change-making problem: given a target value k, find
the smallest set of coins that sums to k. The Minister of Finance offers you the job of creating

a Dynamic Programming solution.

Define CM(k) = the minimum number of coins needed to sum to k, where k >=0. For
example, CM(11) =2, since 11 = 4+7

Here is part of a recurrence relation for CM(k):
CM(k) =1 + min{CM(k-1),CM(k-4),CM(k-7),CM(k-9)} ifk>=9
a) (8 marks) Complete this recurrence relation by adding appropriate formulae for all

remaining cases. ﬁgﬁgfﬁﬁ Bse cue Festh

CM(k) =1 + min{CM(k-1),CM(k-4),CM(k-7)} if7<=k<9

CM(k) = 1+ min(CM(k-1),CM(k-4)} if4<=k<7
CM(k) = 1+ CM(k-1) if1<=k<4
CM(0) =0

Marking: 2 marks for each line. If they do it a completely different way, give marks as
seem appropriate, depending on correctness. If they show they know the purpose of the
recurrence relation to describe a relation between the optimal solution for k and the
optimal solutions of smaller problems, they should get at least 4/8



b) (6 marks) Determine the computational complexity of computing CM(k) for k >=0

We can use the recurrence to compute CM(i) for i =1..k. Each computation is based on at most 4
previously computed CM values, so the algorithm runs in O(k) time.

Marking: If they say polynomial but not O(k), they should get 3/6
Some students may say “linear” or O(n) — that's fine.
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This is a closed book test. You may not refer to any resources.
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Please write your answers in ink. Pencil answers will be marked, but will not be reconsidered
after the test papers have been returned.

The test will be marked out of 50.

Question 1 /25
Question 2 /25
TOTAL /50

Remember, remember, the fifth of November



Question 1 (25 Marks)

Suppose that you are given an n * n checker board and a single checker.

You must move the checker from the top row (row 1) of the board to the bottom row (row n). At each
step, you may move the checker to one of the following squares:

— the square one row down and one column to the left, if there is one — i.e. diagonally down to
the left

— the square one row down in the same column — i.e. immediately below

— the square one row down and one column to the right, if there is one — i.e. diagonally down

to the right
/ /a,b - N\ ..'-7
X L 4

atl, b-1 a+tlb atl,b+l

4l MpHRA s

We will use the notation [a,b] to represent the square in row a and column b, so from [a,b] you can
move to [a+1,b-1] or [a+1,b] or [a+1,b+1], as shown in the diagram.

Each square contains a quantity of money — the value of square [a,b] is given by Val -
You are allowed to(start on any square in the top row:[and E‘mish on any square in the bottom rovﬂ Your
task is to create a Dynamic Programming algorithm to find the path from the top to the bottom with the

maximum total value.

Example: consider this 3*3 board. The values are shown in each square, and the optimal path is
highlighted in grey (the other squares have all been left white for clarity).

2 3
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4 5 9
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Define MV(a,b) to be the value of the pptimal path from square [a,b] to the bottom row.
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(a) [10 marks] Here is part of a possible recurrence relation for MV(a,b)

MV(a,b) = Value(a,b) + max{ MV(a+1, b-1),
MV(at+1,b),
MV(a+1,b+1)
b

Complete the definition of this recurrence relation, or substitute your own complete recurrence relation
if you prefer. Think about base cases. Think about special cases when you are at the left or right side
of the board.

Solution:

Base cases: MV(n,b) = Value(n,b) for all b

i(%{_ﬁlﬁd =¥ &
Special cases: At
MVi(a,1) = Value (a,1) + max{MV(a+1,1), MV(a+1,2)} # there is no column 0
— ———
MV(a,n) = Value(a,n) + max{MV(a+1,n-1), MV(a+1,n)} # there is no column n+1

—

Marking:

Base cases: 5 marks

Special cases: 5 marks

If the student clearly understood what was required but could not properly solve the base cases
and special cases, they should get at least 6/10



Aimevxb‘“""“"\ =

Two

(b) [5 marks] What data structure will you use to store the MV() values?
S quan B4k adads A%l ae AN SR

Solution:

The natural choice is a 2-dimensional array with the same dimensions as the board. Let MVT be this
array. Then MV (a,b) will be stored in MVT[a][b]

Marking:

I'm not sure what alternative answers might be given ... but the important idea is that we need to
be able to access each MV() value in constant time. If the student describes a structure with that
in mind, they should get at least 3/5

‘Vo\/v \JU Lo’

(¢) [5 marks] In what order will you compute the MV() values?
Solution:

Using the base cases, we can compute MV (n,b) for all b
Then we can compute MV (n-1,b) for all b, then MV (n-2,b) for all b, etc
The last values computed would be MV(1,b) for all b

Marking:

The key concept is that the MV () values must be computed in an order that makes sure all
required information is available when it is needed.

—_—
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Question 2 (25 Marks)
Consider the 0/1 Knapsack Problem: Given a set of n objects S ={sy, ..., sn}, each with mass m;
and value vj, and a container with capacity k, we want to find the maximum-value subset of

the objects that will fit in the container.

A dynamic programming solution for this problem may be created using a recurrence
relation like this:

Let KS(i,x) = the maximum value we can obtain from {sy, ..., si} with a container of capacity x

if m;j > x KS(i,x) = KS(i-1,x) # if s; is too big, we can't take it
if mj <=x KS(i,x) = max{ vi + KS(i-1, x — mj), # we either take s;
KS(i-1, x) # or we don't
}

with base case
KS(1,x) = v1 if x >=my
=0 if x<mq

Now suppose a further constraint is added: we can't choose more than r objects, where r is
any integer.
(a) [15 marks] Revise the recurrence relation to adapt to this modification.

Solution: We can add a third parameter to the recurrence relation to indicate the number of objects we
are permitted to take. Each time we take an object, this number decreases.

Use KSL(i,x,t) to represent the maximum value we can obtain from {s1, ..., si} with a container of
capacity x and an object limit of t
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and value vj, and a container with capacity k, we want to find the maximum-value subset of

the objects that will fit in the container.
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any integer.
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Then the recurrence becomes
if mi>x KSL(i,x,t) = KSL(i-1,x,t) # if s is too big, we can’t take it

ifmi<=xandt>0
KSL(i,x,t) = max{ vi + KSL(i-1, x — mj, t-1), # we either take s;
KSL(i-1, x,t) # or we don’t
}

with base cases
KSL(i,x,0) =0 foralliand x

KSL(1,x,t) =viifx>=mg and t>0
=0 ifx<m

Marking;:

The essential concept is the inclusion of a third parameter that reduces as items are
selected. A student who does this should receive at least 8/15. If a student gets the
recursive part of the recurrence correct but does not get the base cases, or vice versa, they
should get at least 10/15. A student who gets both parts almost correct should get 13/15 or
14/15



(b) [5 marks] What is the complexity of computing each KS() value in your revised
recurrence relation (assuming the relevant subproblems have already

been computed)?
— oCn’)

A
Solution: —2% £k é&ﬁﬂ

Each value is computed in constant time since there are fixed number of relevant subproblems.

. 117
Marking;: -

It is not technically incorrect to answer “O(n)” or even “polynomial” but these are weak

answers, only true because “constant time” is included in O(n”t) for all t >=0. Students
who answer in either of these ways should get 2.5/5

(c) [5 marks] What is the complexity of computing the entire collection of KS() values?

Solution: % &g %S Comile nity 44 83E, ook FL pETF LN

The total number of values we need to compute is n*k*r and each one takes constant time, so the
complexity is O(n*k*r) oln3)

For 2 bonus marks, we can observe that values of v that exceed n can simply be reduced to n, since we

cannot possibly take more than n items. This gives O(n"2 * k)

Marking:

If the student understands that we need to multiply the number of values to be computed by the
time to compute each one, they should get at least 3/5

Students who respond that the complexity is polynomial should get 1/5, since they are claiming
that this is a polynomial-time algorithm for an NP-Complete (technically, NP-Hard) problem.
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Question 1 (28 marks)

Congratulations! Your international prestige as a problem-solver has earned you
a new job — you now operate a guided-tour business in Balatronia.

Tourists sign up for 1-week (Short) or 2-week (Long) guided tours of the local
mud pits during the summer season. There is a Short tour and a Long tour
starting each week except the last week of the summer - in which there is only a
Short tour. Each tour is worth a different amount of tip money, based on the
wealth of the tourists. Your goal is to decide which tours to guide personally,
without choosing any overlapping tours.

For example, suppose the summer season is 5 weeks long. The tours starting in
each week might look like this. Tours are numbered according to the week in
which they start.

Week 1 Week 2 Week 3 Week 4 Week 5
1-week Shortq Shorts Shorts Short, Shorts
tours Value=10 |Value=7 Value=12 |Value=4 Value =9

Long, Longs
2-week Value =20 Value =18
tours Longs Longy

Value =22 Value = 16

One solution is to choose Shorty, Longs, Short,, Shorts with a total value of 45

A better solution is to choose Long,, Shorts, Longs with a total value of 48

In Week 1, you can guide either the 1-week tour (Short;) or the 2-week tour
(Longi). In Week 2, you are either halfway through tour Long; or you can start
guiding either of the tours that start in Week 2 (if you chose Short; in Week 1).

This question asks you to construct a Dynamic Programming solution to
maximize your personal profit. Your solution must work on all instances, not

just the example shown here.




mox week C1) = \gllShort ) ARH - gesh, 2ie AR MR- don

Mox. week (2D = max ¢ value (shote )< Veludskvea ) A28 fB44E , R4t RN 3-T 3 Y
Valu&([nkﬁ,»

max_ week (n) = My ([ lalue (Shovt n) + mox weee Cn-l),

Value Clongne ) 4 wax. weee (R-3) )

C- Toted 4  ux o doble, whidh Yow vefveseat the o=k Aum ber ond  Colowmu represent +he
vt . During  competution, the e il ke Flld >ee sttt o meek

Ol_ for Mox. week Ch) the ﬁ?‘&lmc«' value s 6]45‘”" o pax. wcek Cnl, check [""‘3“4 and  Max.week Tr-X

w5 vell as gt ond muweek Ca-i1 ,  choose the wox of them. Then keep teratiy  Hiougn e detil of sptina/

q.‘,l“_.f.'w. will LO_ w;vulﬂd -

e, omtlexty 1 00V —> ALA Auay 2R o didisne



(a) (5marks) Explain how this problem satisfies the Principle of Optimality .
Your explanation must be clear but a rigourous proof is not required.

(Hint: Suppose the optimal solution contains a particular tour X. What can you
say about the chosen tours that precede X, and the chosen tours that follow X?)

This material was not covered in F2019 ... but I have included the solution here
in case you are interested!

Solution:

Based on the hint: if tour X is in the optimal solution, then the chosen tours
that precede X must be a solution to the subproblem of choosing tours within
the weeks before X begins. Similarly, the chosen tours that follow X must be a
solution to the subproblem of choosing tours within the weeks after X ends.
These must be optimal solutions to these subproblems because if they weren’t we
could replace them by something better, which would improve the overall
optimal solution — which is not possible.

It is also possible to focus on the last tour in the optimal solution — it will be
either Short,, or Long, _,. Whichever it is, the other tours in the optimal
solution must be an optimal solution within the weeks preceding the final tour
in the optimal solution.

We could also focus on the first tour in the optimal solution — it will be either
Shorty or Long,. Whichever it is, the other tours in the optimal solution must
be an optimal solution within the weeks following the first tour in the optimal
solution.

Marking;:

A solution similar to any of the above 5
A solution that shows understanding of the P. of O.

without applying it successfully to this problem 3
For trying 1
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(b) (8 marks) Give a recurrence relation for this problem.

Hint: Suppose the season is 77 weeks long. At the end of Week 1, you will either
be finishing Short,, (and getting its value) or finishing Long,,_1 (and getting
its value). Associate each of these possibilities with the appropriate
subproblem. You may want to use “P(k)” to represent the maximum profit you
can get in the first £ weeks of the season.

Solution:

Defining P(k) as above and Val(T) to be the value of tour T, we can use

Recursive part:

fork >2
P(k) = max ( Val(Shorty) + P(k-1), # finish with a short tour
Val(Longy—1) + P(k-2) # finish with a long tour
)
Base cases:
P0)=0

P(1) = Val(Shorty)

Marking;:
for a correct recursive part 5
for a partially correct recursive part 3
for trying 1
for a correct base 3
for a partially correct base 2
for trying 1

Students might omit the P(0) = 0 base case. That’s ok but their recursive part has
to be written in such a way that it never tries to recurse to P(0) ... so if it refers to
P(k-2), it must ensure that k > 2.



(c) (5 marks) Explain and justify the order in which you will compute solutions
to subproblems. If you plan to use a table to store solutions to subproblems, this
is the place to describe it.

Solution:

Since the recurrence relation only has one parameter, we can use a 1-dimensional
array A to hold the solutions to the subproblems : Ali] will be used to store the
value of P(i). The array should be indexed from 0 to n. The array is initialized
with A[0] = 0, A[1] = P(1).

After that, the elements of the array are filled in ascending order. Each element’s
value depends on the two values immediately to its left. This order is chosen
because it traverses the array in a natural manner and each element’s value is
computed as soon as the information needed is available.

It is also acceptable to manage the filling of the table using recursion (or a
stack!) to keep track of the subproblems encountered. Each subproblem is
encountered multiple times but solved only once. Due to the nature of this
particular problem, the table will still be filled in from left to right!

Marking;:

For any rational plan for the order of solving the 5
subproblems

For an explanation with minor/significant/major errors 4/3/2

For trying 1



(d) (5 marks) Explain how you will determine the details of the optimal solution.
Solution:

When we know the optimal final value, we can look at the two values
immediately to its left in A to determine which of those options led to the
optimal answer. This tells us whether we ended with a Short or Long tour.
From whichever element of A led to the final answer, we repeat this process to
determine the tour we choose before the last one ... and so on back to the start of
the summer.

Alternatively, the table could have been defined to also contain information
regarding the elements of the optimal solution. In that case, the extraction of
this information would be based on how it was stored.

Marking;:
For a reasonably clear explanation of how to get 5
the information
For an explanation with minor/significant/major errors 4/3/2

For trying 1



(e) (5 marks) What is the complexity of your algorithm? (Use n to represent the
number of weeks in the summer season)

Solution:
Each element of A is computed in constant time, so filling A takes O(n) time.

Each step of the “trace back” is determined in constant time and there are at
most n steps, so finding the details of the optimal solution takes O(n) time.

Thus the entire algorithm takes O(n) time.

Marking:
For a correct analysis of their version of the algorithm 5
For an explanation with minor/significant/major errors 4/3/2

For trying 1



QUESTION 2 (20 Marks)

You and your worst enemy are playing a game. Between you are three piles of
coins, containing 11, Mg and N3 coins respectively. You take turns removing
coins according to this rule: on your turn you must remove a positive number of
coins from any one of the piles (ie you must take at least 1 coin). You win the
game if you take the very last coin.

Each possible game situation is described by the sizes of the piles such as (4,7,2)
or (2019,3,12)

If a single move can get from (a, b, c) to (d, e, f)we call (d, e, f)a child of
(a, b, ¢). For example, we can get from (8,7,5)to (8,4, 5) by removing 3 coins
from the centre pile so (8,4,5) isa child of (8,7,5)

We can label a game situation “W” if the player who takes the next turn can be
sure of winning, and “L” if they can’t. For example (0,0, 5)is a “W” situation —
the player can take the whole third pile, but (1, 1,0)is an “L” - the player must
take 1 coin, then the other player takes the last coin and wins.

In general, a situation is “W” if any of its children is labelled “L”, and a situation

is “L” if all of its children are labelled “W”

Create a recurrence relation to determine if situation (11, ng, ng) is a “W” or “L”

(Write your answer on the next page)
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(@) (10 marks) Recursive part:

Solution:

I will use G(a,b,c) to represent the label of the game when the three piles have
sizes a, b, and c.

G(ab,0) =

IIWII if

IILII if

G(a,b,x) = “L” for any x in the range [0..c-1]
G(a,x,c) = “L” for any x in the range [0..b-1]
G(x,b,c) = “L” for any x in the range [0..a-1]

G(a,b,x) = “W” for all x in the range [0..c-1]
G(a,x,c) = “W” for all x in the range [0..b-1]
G(x,b,c) = “W” for all x in the range [0..a-1]

or
or

and
and

The two cases given cover all of the possibilities, so it is not actually necessary
to specify both. For example

G(ab,0) =

IIWII if

IILII

is perfectly acceptable

Marking;:

G(a,b,x) = “L” for any x in the range [0..c-1]
G(a,x,c) = “L” for any x in the range [0..b-1]
G(x,b,c) = “L” for any x in the range [0..a-1]

otherwise

- for a correct solution

- for a solution that is mostly correct with a minor error
such as making the ranges start at 1 instead of 0

- for a solution with a major error such as leaving out
one of the sets of subproblems

- for a solution that looks like a recurrence relation for

the game but is seriously wrong
- for a solution that shows limited understanding of
what is required

- for trying

or
or

10



(b) (10 marks) Base case(s):
Solution:
The following is sufficient:
G(0,0,0) =“L”
but students may include others such as
G(0,1,1) =G(1,0,1) = G(1,1,00 = “L”
Students may use other sets of base cases such as

G(0,0,x) = G(0,x,0) = G(x,0,0) = “W” forall x>0
G(0,x,x) = G(x,0,x) = G(x,x,0) =“L” forallx >0

Another possible answer is (see note below)

G(x,y,y) = G(y,x,y) = G(y,y,x) = “W” forall x>0 andy >0

The important thing is to have a set of base cases such that
- every possible sequence of moves (eventually) reaches one of the base
cases
- situations with one or more empty pile are covered

Note: Students might not include a base case for (0,0,0) since that actually
signifies the end of the game. That's ok as long as they “cover” all the states
that lead to (0,0,0) so the recursion can’t end up at (0,0,0) and not have a
resolution. The final answer shown above is an example of such a set of base
cases.

Marking;:

pretty much the same as Part (a). As noted above, it is important
that every sequence of moves in the game ends up in a base case.



QUESTION 3 (2 Marks)

True or False:

It was just a semi-frivolous T/F question. The correct answer was
“FALSE”
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“I guess the issue for me is to keep things dynamic.”

— Robert Downey Jr.



QUESTION 1 (24 Marks)

You have been chosen to plan a canoe trip down the NottaLottaWatta River for
the Queen’s University Environmental Exploration Nature Society (acronym:
QUEENS) . Canoes are available for rent at trading posts along the river. You
will start the trip by renting a canoe at Post 1 (where the river begins) and end
the trip in Post n (the end of the river). BUT ... you don't have to keep the same
canoe the whole way. You can stop at any post, drop off the canoe you have and
rent another one. You can only travel downstream. For all pairs (a, b) with

a < b, the cost of renting a canoe at Post @ and dropping it off at Post b is given
by a predetermined matrix Cost(a, b).

For example if there are five posts in total, the costs might be

Cost(a,b) Post b
matrix P1 P2 P3 P4 P5
Py X 10 35 50 65
Py X X 30 35 45
Post a
P 3 X X X 15 25
P 4 X X X X 20
P 5 X X X X X

In the example shown, you could rent a canoe from P to P, then rent another
from P5 to P, then another from P35 to Py, then another from Py to Ps. This
would cost10 + 30 + 15 + 20 = 75. Another solution would be to rent a
canoe from P to P5 (cost 35) and another canoe from P;5 to Ps (cost 25) with a
total cost of 60.

Your job is to plan the sequence of canoe rentals to minimize the total cost.

We can think of the problem like this: We have to return our last canoe at F,.
We could have rented that canoe at any of Py, P, ... P,,_1. Where-ever we
rented our last canoe, we have to solve the rest of the trip optimally from P; to
that point.
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(a) [6 marks] How many different possible solutions are there? Remember there
are N Posts, where n can be any integer > 2. Explain your answer.

Solution: We have to rent a canoe at Py, and we can also rent canoes at any
subset of {Pa, ..., P,_1}. Thus the number of possible solutions is the number
of subsets of {Ps,...,P,_1} ... whichis2" 2

Marking;:
Correct answer with explanation 6 marks
Correct answer without explanation 4 marks
“Close” incorrect answer (such as 2" 1) with

explanation (such as “any subset”) 3 marks
“Close” incorrect answer without explanation 2 marks

“Wayout” answer (such as 1) with or without
explanation 1 mark



(b) [12 marks] Let M C(%) = the minimum cost of getting from P to F;
(so M C'(n)is our over-all solution)
Give a complete statement of a recurrence relation for M C'(%).
As a starting point, here is a base case: M C'(2) = Cost(1,2)
Solution:
foralli>2:
MC(@G) =min (Cost(1,i),
MC(i-1) + Cost(i-1,i),
MC(i-2) + Cost(i-2,i),

MC(i-3) + Cost(i-3,i),

MC(2) + Cost(2,i)
)

Marking:

The hint should suggest that the cost of getting to P; = the cost of the final
canoe that gets us there, plus the minimum cost of getting to the post where we
rent that canoe.

The key concept is that the value of MC(i) depends on all the previous values.

A student whose answer captures these ideas should get at least 8/12 even if
they are unable to correctly express the recurrence relation. Giving 10/12 or
11/12 is appropriate if the answer is close to being correct.

A student whose answer shows that they understand the concept and purpose
of a recurrence relation, but not how to create one for this problem, should get
at least 6/12

A student whose answer shows only a weak understanding of recurrence
relations should get about 3/12



(c) [6 marks] Determine the computational complexity of using a Dynamic
Programming approach to solve this problem. Explain your answer.

Solution: Using the recurrence relation given, the value of MC(i) is computed by
taking the min of i-1 values, each of which is computed in constant time. The
sum of all computations for MC(n) is thus proportional to the sum1+2 + ... + n-
1, which is in O(n?)

Marking:

Same rubric as part (a)



QUESTION 2 (24 Marks)

You have landed a job in a steel mill. The mill produces steel bars of
random lengths (all lengths are integers). Strangely, customers seem
to prefer steel bars of regular lengths. Your job is cut the raw steel
bars into shorter lengths in the most profitable way.

More precisely, you need to cut a bar that is n metres long into
shorter pieces, each piece being < 5 metres long. Each short piece
has a profit value to the company as shown in this table:

Length 1 2 3 4 5

Profit 2 3 6 9 11

So if n =6, you could cut the bar into a piece of length 5 and a piece of
length 1, with a total profit of 13 ... or you could cut the bar into a
piece of length 4 and a piece of length 2, with a total profit of 12.
There are many other possibilities, including cutting the bar into six
pieces of length 1, or two pieces of length 2 and two pieces of length
1, etc.

But if n =7, cutting a piece of length 5 and a piece of length 2 gives a
total profit of 14, while a piece of length 4 and a piece of length 3
gives a total profit of 15. You could also cut the bar into two pieces of
size 2 and one piece of size 3, etc. etc.

Design a Dynamic Programming algorithm to find the maximum
profit obtainable from a bar of length n, where n can be any positive
integer.

Hint: remember the dynamic programming algorithm for change-
making.
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(a) Design a recurrence relation for MaxProfit(n), including base
case(s) and a recursive part [8 marks]

Solution: for each of the lengths between 1 and 5 except 2, the profit
cannot be improved by cutting. For a length of 2, we get a better
profit (4) by cutting it into two pieces of size 1. So the base cases are:
MaxProfit(n) = Profitn) forn=1,3,4,5

MaxProfit(2) = 4

Forn > 6, the recurrence relation is:

MaxProfit(n) = max( 2+ MaxProfit(n-1),
3 + MaxProfit(n-2),
6 + MaxProfit(n-3),
9 + MaxProfit(n-4),
11 + MaxProfit(n-5)

(Note that we can actually leave out the 3+MaxProfit(n-2) option
since it will never be optimal ... but it’s ok to leave it in.)

Marking:
Base Cases: 3 marks
Recursive Part: 5 marks

As with the recurrence relation part of the previous question,
please give part marks if the student understands what is to be
done but has some errors in their solution.



(b) Specify how you will store information [5 marks]

Solution: Since the recurrence relation has only one parameter, we
can store information in a 1-dimensional array.

Marking:

Students might suggest storing the results in a hash-table - it really
offers no advantage since we need to solve all the subproblems up
to n anyway. I would give 4 marks for this - it’s overkill.

Students might also suggest using a 2-dimensional array (I'm not
sure how!) - I would give 3 marks for this.

If a student’s answer shows that they really didn’t understand the
concept of storing the results of subproblems in an easily-
accessible way, they should get 1 mark for trying.



(c) Specify how you will order your computations [5 marks]

Solution: MaxProfit(n) depends only on values of MaxProfit(x)
where x <n. We can perform the computations from MaxProfit(1) up
to MaxProfit(n) — this ensures that all information needed for each
MaxProfit value is available when it is needed.

Marking:

Students may also suggest working from the top down
(recursively) and storing each value the first time the subproblem is
encountered, then looking the values up on subsequent requests.
This is ok — it has the same complexity (just a bit more overhead).

If a student’s answer shows that they understand the question but
they cannot relate it to this problem, they should get about 2 or 3
out of 5.



(d) Explain how you will reconstruct the set of cuts from the
computed MaxProfit(n) information [6 marks]

Solution: Once we know the value of MaxProfit(n), we can look at
its five possible predecessors (the values for n-1, n-2, n-3, n-4 and n-
5) and determine which cut length resulted in the maximum value.
This tells us what the final cut was. We work back in this manner to
find all the cuts.

Marking:

Students might also suggest “carrying” the optimal set of cuts
along in the table, so the solution would be immediately available,
or carrying some “most recent cut” information along in which case
the solution details can be reconstructed without doing any
comparisons. These are both completely acceptable.

An answer which is fundamentally correct but contains some errors
should get at least 4/6

If the student’s answer shows they understand what is being asked
but they can’t express a solution for this problem, they should get 2
or 3 out of 6.



QUESTION 3 (2 Marks)
True or False:

The 2018 Award for Excellence in Dynamic Programming was won
by Netflix.

FALSE

Solution: False

Marking: 2 marks for everyone
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Alice and Bob take turns playing a game, with Alice starting first.

Initially, there is a number n on the chalkboard. On each player's turn, that player makes a “
move consisting of: Neitler QL dew hove any
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¢ Replacing the number n on the chalkboard with n - x .
Also, if a player cannot make a move, they lose the game.
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Return True if and only if Alice wins the game, assuming both players play optimally.
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Example 2:

Input: 3
Output: false

Explanation: Alice chooses 1, Bob chooses 1, and Alice has no more moves.
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121. Best Time to Buy and Sell Stock

Easy dy 4231 &p 193 Q Add to List [0y Share

Say you have an array for which the it" element is the price of a given stock on day i.

If you were only permitted to complete at most one transaction (i.e., buy one and sell one share of
the stock), design an algorithm to find the maximum profit.

Note that you cannot sell a stock before you buy one.

Example 1:
Input: [7,1,5,3,6,4]
Output: 5
Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6),
profit = 6-1 = 5.
Not 7-1 = 6, as selling price needs to be larger than buying
price.
Example 2:
Input: [7,6,4,3,1]

Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.
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746. Min Cost Climbing Stairs

Easy @y 1653 &p 374 Q Add to List [0y Share

On a staircase, the i -th step has some non-negative cost cost[i] assigned (O indexed).

Once you pay the cost, you can either climb one or two steps. You need to find mini to
reach the top of the floor, and you can either start from the step with index O, or the step with index
i

Example 1:

Input: cost = [10, 15, 20]

Qutput: 15

Explanation: Cheapest is start on cost[1], pay that cost and go to the
top.

Example 2:

Input: cost = [1, 1ee, 1, 1, 1, 100, 1, 1, 100, 1]

OQutput: 6

Explanation: Cheapest is start on cost[@], and only step on 1s, skipping
cost[3].

def minimumCost(cost, n):

# declare an array
dp = [None]*n

# base case
if n == 1:
return cost[0]

# initially to climb

# BN SthRo R th s EanE
dp[0] = cost[0]

dp[1] cost[1]

# diterate for finding the cost
for i in range(2, n):
dp[i] = min(dp[i - 11,
e[l = 21D < cesEl]

# return the minimum
return min(dp[n - 2], dp[n - 1])
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