
According to midterm 2018 : MIT M

1. Disk it"¥↳
→ sauce

of
→ time

¥
2. Record store

→ char

→ vatchar

3. Page Replacement Algorithm

4. Schedule

5 . SQL

6. &t% : min → s → ms → des

r

Disk Storage

* Learning Goals

d. Explain the impacts that diskatiitiy on DBMS query performance

↳ How DB fetch records ?
→ Disk

DB server ¥É%g•→ cache - *Amt¥m
45TH. DBMS Query ¥t☒t8k☒%-

' Fifth Disk '&Ét¥£t¥
,
£44. Disk E-

- IT i¥¥i4Atkt¥=&i¥ DBMS Query Ask#t.it#-IfAsEJ
II. 4×42 ?E Read it , E-¥7 write z

Write: Transfer data from RAIN to disk
*I

↳

'

ÉTE%fÉ server ¥É¥¥ diskah.BY#Eid-t:-?-&iE-fI-s-tiI&---o.
Random - access memory : A RAM device allows items to be tend /written in

" almost " the

same amount of time irrespective of the physical location of data .

physical location ✗ Access time

Disk : Access time of a disk pages varies depending upon its location on disk
.

physical location → Access time

71""
*

1111.1.÷→÷¥t=÷
""

k
Butter pool : 1

. independently of the 0s

2. be allocated by the database manager for caching table and index data as

it is read from disk

Formally :
RAM VS Disk

physical → Access time : ✗ ✓

cost : $4T for 8 GB $160 for 240 byte

$32.5 . 2-
☐

/byte $ • 2-38 /byte

is Volatility : ✓ ✗

9osit.in On

y
: register

t

On chip Ll cache (SRAM)

t
off chip K2 cache C SRAM)

t

main memory

a

Local secondary storage

t
remote secondary storage

2. Draw the memory hierarchy . Show where database boteeleuects are most likely to

occur and where extensive caching take place .

qosit.in on

y
: register

I

On chip Ll cache (SRAM)

t
off chip K2 cache csRAM)

t

main memory

t

Local secondary storage

t
remote secondary storage

Bottleneck : ?

Extensive caching where : ?

3 . Components and contrast : cost . capacity and speed of access
,
in the levels of memory hierarchy

Access time [Seconds) Cost

register 0

I

°^°h" " '"he "*" "" "" { ""l"t
off chip K2 cache C SRAM) µ

-8

I
✓

Main memory to
-8

t

Local secondary storage 10-2

t
remote secondary storage

gp
Pase

4. Identify the components of a disk drive
* spindle

* Disk Heads Head /write heads

* Tracks

* sector

* platters

* Atm Assembly

Other views :

Arm
FBA Assembly

44-411--4 platter AA #4 surface -1¥.li# head 9
* -9 sector'¥rqtf¥z%- • track CtA€A4AFT¥t

* cylinder : All-1h the same track #

CI-tifa-TAI.FI#-t&j*iE-IxHIEg
:|. Arm assembly fee head É¥Mfb¥¥j -4 track 1- c¥i¥¥ÉE¥¥F¥=ab¥f -4 cylinder
2. Only one head read / write at a time ,C?¥¥¥.EE#-&B---atgEJ3-T cylinder, # ¥ - T+raak¥¥z/¥,

key components : key calculation components :

Head Tracks

spindle platters ⇒ surface

tracks cylinder
sectors sector

platters

Arm assembly
cylinder

& -4 sector ?E smallest addressble unit in a disk

↳
Block size = multiple of sector size

5. Given disk geometry figures , calculate the amount of time it takes to head / write

with a number of blocks /pages , tracks ,
or cylinders of data to / from a disk

* Access time : the time to read / write a disk page / block

= seek time C move the arm to position the disk head Just above a particular cylinder)
+

Rotational delay C Wait for the start of the desired block to come to be positioned under the head)
+

Transfer time C the time it takes to transmit between disk and ANY

° " """ "" """" """ " """
* """"" "

"d """"" "" " """" ""d """" """

µ

€ """" "

to /from a disk

⇐- q%¥
"

hey
-7☒→
\--I€_-€_€_k¥j seek time¥☒⇐←¥

* Seek time varies from 1- 20ms

* Rotational delay varies from 0-10ms

* Transfer time is determined by the disk 's rotation rate , less than 1ms / 4k pages

↳ Assume extra transfer time c when all data for requested page passes under the head
= transfer time

calculation : see example

Note : ¥¥_¥ KEI, : moving time from C1 to C2 is 1ms + 1ms pep n cylinders moved

At averae seek time : 1ms + -3 .lt#1movedntrack-j
µ

Maximum seek time

Note : Average rotational latency : zsziy~QI-i%Ea-k-REHGa-fi.fi
Note : +taster time for a page anything

1. calculate 1=1 sector needed for the page or anything

2. Calculate the portion of one track that needed to store a page

↳ 1 page = n sectors

we need nmse.IT#ak = ✗ tracks
↳ a fraction , hopefully

3. Use ✗ to multiply the rotational delay ¥ one spin→ ✗ . Spin ✓

r

7.C and contrast the relative speeds of seek , rotation ,
and transfer times - when accessing

a given size of data on disk
.

8. Explain how a large file , broken up into pages , can be optimally placed on a

disk to improve performance

↳ %efetch.mg : load a data before it's needed

↳ i.EE#iEn.DBMsEi8I:HFfFGAK8X-.Ef.fi#TEs%4fJt--.-sE.IiEKJprefetch
↳ h§fd→ , -E- ☒ 1- queryakizgh.F.IE?----I2reuiew.t--E-E-ereview '2⇐FñET¥-÷

Izk¥&iE . it-K.fi#ft.-t=FEkEditE-Ho? E.EE#..DBxxs1EH- disk
↳ Blocks in file should be arranged sequentially on disk C. by

"

next"

-

|±÷¥?"⇒⇒*¥-order, , to minimize seek and rotational delay prefeed-zefi-f-f.ae
view

↳ "

next
" order : gfA¥=,£É¥£%_É£
We like to access :

Blocks on same track

> Blocks on same cylinder
> Blocks as adjacent cylinder

SAN : Storage Area Networks : Group of networked disk devices . Can be shared by group of machines
.

- High performance, reliable

- RAID : Redundant Array of Independent Disks Cat lease to ways to read a data

☐ UBC used to use SAN, now Isilon C Network Attached storage)

9. comune and contrast HDD to solid state disks (SSD)

HDD SSD

Memory Direct access ? flash memory

parts No moving Parts/ spinning disks

power
C 's ,

's) • HDD
Noise

quieter

reads J-10ms o - 1ms

price $60-70GB) , $115 -140 (ITB)

capacity smaller

write cycle limited : a -5 million

-

Random write / feud : relevant when dealing with lots of small files scattered around the disk

↳ For HDD : The head moves ,
before the next piece of the file can be read /written

Eos SSD : since no moving parts,

↳ erase a block of HAND flash

No matter the size of rwititten data

* SSD get us 1 order of magnitude closer to speed of RAM

RAM - HDD : 5 order of magnitude.

Buffer pool management
Learning Goals
Other

Page Replacement
Disk Scheduling, Metadata, Records, and Pages

Learning Goals
Other

Buffer pool management

Learning Goals

Explain the purpose of a DBMS buffer pool, and justify why a DBMS should manage its own buffer
pool, rather than let the OS handle it.

Buffer pool managed by DBMS is an area of main memory that has been allocated by the
database manager for the purpose of caching table and index data as it is read from disk
When the buffer pool is managed by the DBMS, DBMS will choose algorithm/act on discarding
pages by maximizing the IO needs. However, if the buffer pool is being managed by OS, the way it
handles discarding pages will be pretty general since OS has so many other things to worry
about. Moreover, if managing its own buffer pool, number of systems calls can be reduced.
Summary: DBMS maintain their own buffer rather than use that of the OS so that they control
when to let out pages from it. It also avoids a system callfor each OS buffer read, although that
could even be avoided by OS design.

Provide an example of sequential flooding in a DBMS buffer pool.

A nasty situation caused by LRU + repeated sequential scans

Ԟ੪ฎྯӻpage request᮷ฎmiss

 No Steal Steal

No Force Fastest

Force Slowest

 No Steal Steal

No Force No Undo/Redo Undo/Redo

Force No Undo/No Redo Undo/No Redo

Explain the tradeoffs between force/no force and steal/no steal page management in a buffer pool.
Justify the use of the ARIES algorithm to exploit these properties.

Basically, If employing steal approach, we can use pages that is being utilized by uncommitted as an
empty frame for the page replacing algorithm, so the speed will be increased. But an undo log need to
be ᖌಷ when employing steal approach and dangerous(?). As for no force approach, it does increase
the speed since we can use temporary storage to store transaction's updated pages, and then write
them in disk in batch -> fewer IO operations.

ARIES???

For a given reference string, compute the behaviour of the these page replacement algorithms: FIFO,
LRU, MRU, Clock (reference bit), and Extended Clock (reference bit + dirty bit).

FIFO: victim = oldest page

Least Recently Use(LRU): victim = page that hasn’t been referenced for the longest time

Most Recently Used(MRU): victim = page that has been most recently used

Clock: If a page is referenced often enough, its reference bit (RB) will stay set, and it won’t be a
victim.

if an empty frame in BP:

Use it to store the new page's data
Set the RB to 1
Set the timestamp to current time

else:

Find the oldest page(page with the oldest timestamp)

If that page's RB is set to 0, then:

This is the victim page, replace it with the new page
Set the new page’s RB to 1
Set timestamp to the current time.

Else:

Decrement that page's RB to 0
Update that page's timestamp to the current time

Extended Clock

if an empty frame in BP:

Use it to store the new page's data
Set the RB to 1҅DB to 1(?)
Set the timestamp to current time

else:

Find the oldest page(page with the oldest timestamp)

If that page's RB is set to 0/0 or 0/0* then:

This is the victim page, replace it with the new page
Set the new page’s RB to 1, DB to 1(?)
Set timestamp to the current time.

Else:

Create a reference string that produces worst-case performance for a given page replacement
algorithm.

switch (RB/DB){
 case (0/1):
 set to 0/0*;
 case (1/0 || 1/0*):
 set to 0/0 || 0/0*;
 case (1/1):
 set to 0/1;
}

FIFO: 1 3 0 4 1 3 0 for 3 available frames

LRU: 1 2 3 1 2 3 for 2 available frames

MRU: 1 2 3 2 3 for 2 available frames

[Later] Explain how the page replacement policy and the access plan can have a big impact on the
number of I/Os required by a given application.

[Later] Predict which buffer pool page replacement strategy works best with a given workload (e.g.,
table scan, index scan, index lookup, logging, returning many rows, running the RUNSTATS utility).

Other

a page is the smallest unit of transfer between disk and main memory

logical memory: page
physical memory: frames

The Translation Lookaside Buffer (TLB) is a very fast L1 hardware cache. It is used to determine
whether or not a particular page is currently in memory.

Dirty bit/frame: The bit indicates that its associated block of memory has been modified and has not
been saved to storage yet. When a block of memory is to be replaced, its corresponding dirty bit is
checked to see if the block needs to be written back to secondary memory before being replaced or if
it can simply be removed.

Page Replacement

ٌ՜඙֢ғPin

Pinning the pages in main memory is one way to ensure that a process stays in main memory and
is exempt from paging. ଚӬ୮ํӞӻෛጱrequest pinԧᬯӻpageጱ෸҅ײ՜ጱpage countտ++

transactions is a series of one or more SQL statements

commit: A transaction is said to be committed when its log records reach disk.

A transaction that is in progress is said to be in-flight. It hasn’t been committed.

Locks held by the transaction are released at COMMIT time.

Force: At transaction commit time, we force(i.e. write) the transaction's updated pages to disk
(after writing the log records to disk).

forceᒽኼᤒᐏԪࣁۓcommittedԏݸ஠ᶳਖ਼ಅํๅෛᒈڰ೮ԋ۸کᏺፏ҅ᬯ໏տ੕ᛘᏺፏݎኞஉ
ग़ੜጱٟ඙֢ҁๅݢᚆฎᵋ๢ٟ҂̶no-forceᤒᐏԪࣁۓcommittedԏݢݸզӧᒈܨ೮ԋ۸کᏺ
ፏ҅ ᬯ໏ݢզᖨਂஉग़ጱๅෛಢᰁ೮ԋ۸کᏺፏ҅ᬯ໏ݢզᴳ֗ᏺፏ඙ེ֢හҁ൉܋ᶲଧٟ҂҅

public void requestPage(byte address){
 if (isAddressExitstInPool(address)){//use that}
 else{
 byte replacedFrame = pageReplacementAlgorithm();
 if (isPin(replacedFrame)){unPin(replacedFrame);}
 if (isDirty(replacedFrame)){writeToDisk(replacedFrame);}
 readToFrame(address, replacedFrame);
 }
}

 No Steal Steal

No Force Fastest

Force Slowest

֕ฎইຎcommittedԏݎݸኞcrash҅ᮎԍྌ෸૪ᕪcommittedጱԪۓහഝਖ਼տӶ०ҁࢩԅᬮဌํ
೮ԋ۸کᏺፏ҂҅ࢩྌᔮᕹᵱᥝᦕ୯redo log҅ࣁᔮᕹ᯿ސ෸ײᬰᤈڹ჻ҁroll-forward҂඙̶֢

Steal: When the BP desperately No Force needs a free page, we can write a dirty page for an
uncommitted transaction to disk (i.e., we steal frame from an in-flight transaction).

ฎވ꧋ᦜӞӻuncommittedጱԪۓਖ਼ץදๅෛکᏺፏ҅ইຎฎstealᒽኼ҅ᮎԍྌ෸ᏺፏӤ੪ݢᚆ
-჻ҁrollࢧabort෸ᬰᤈۓྌᔮᕹᵱᥝᦕ୯undo log҅զᴠԪࢩuncommittedጱහഝ҅ތ۱
back҂̶ইຎฎno stealᒽኼ҅੪ᤒᐏᏺፏӤӧտਂࣁuncommittedහഝ҅ࢩྌ෫ᵱࢧ჻඙֢҅Ԟ
੪෫ᵱᦕ୯undo log̶

A newly requested disk page that is not currently in the buffer pool causes a page fault.

The page to be replaced is called the victim page

Disk Scheduling, Metadata, Records, and Pages

Learning Goals

Explain why page requests from disk may not be serviced immediately. List some of the reasons for
contention.

Many DB users wanting access to the objects on the disk drive
Non-DB users wanting access to files on the same disk drive
Single user, but many processes/applications requesting service
Overhead service routines(DBMS, OS, ..)

Explain the relationship among disk geometry, buffer pool management, and disk scheduling in
providing good performance for data requests from a user of a DBMS. List the bottlenecks that may
contribute to poor I/O performance in this disk “chain”.

ಅզෆӻጱᶲଧฎ҅Ӟӻrequestᤩ൉҅ڊᆐݸ

՗ᏺፏ᯾ڊݐᬯӻpage/block

ᬯӻ෸ײஃஃᵱᥝdisk schedulingᓒဩጱ݇Ө҅ᬯӻᓒဩ٬ਧԧseek time҅Ԟ੪ฎheadՋ
ԍ෸ײᑏߺکӻcylinder/track
ᑏۖکፘଫጱcylinder/trackԏ҅ݸᏺፏ୏ত᫨ۖ҅ತکᮎӻblock๋୏তጱᮎӻsector҅ᆐݸ
᧛ݐᬯӻblockҁpage҂҅Ӷࢧᕳmain memory

 ಩ᬯӻpage/blockනفbp

ӻߺአpage replacementᓒဩᏟਧᥝ๊ഘڥmain memoryӾ҅buffer pool managerࣁ
page҅ᆐݸ಩ᬯӻ᧛کݐጱpageᕳනᬰ݄

Compute the service order for a queue of track/cylinder/page requests using each of these disk
scheduling algorithms: FCFS (First Come, First Serve), SSTF (Shortest Seek Time First), and Elevator
(Scan with, and without, Look).

Disk Scheduling Algorithms:

Current Status: 165, coming from 164, receiving requests: 1400, 2500, 170, 160, 161, 3500, 162

FCFS, First come First Serve

1400, 2500, 170, 160, 161, 3500, 162
SSTF, Shortest Seek Time(Ԟ੪ฎತ᪗ᐶ๋ᬪጱcylinder) First

162, 161, 160,170,1400, 2500, 3500
Elevator Algorithm: ᬯӻᓒဩݻӞӻොݻ೮ᖅಚൈፗᛗᬯӻොݻӤဌํڦጱrequest

य़ಚൈک՗ੜࣁ165҅ಅզሿک՗164ڟԅࢩ
165, 170, 1400, 2500, 3500
ᬯ෸ײᬯӻොݻጱق᮱ಚൈঅԧ҅੪տࢧ๶
162, 161, 160

ᤑ꧌ᳯғ

Service order: 170, 1400, 2500, 3500, 162, 161, 160
What is the updated service order if: while serving cyl. 1400, we suddenly get these new
requests: 1250, 1400, 1500
1400, 1500, 2500, 3500, 162, 161, 160 X(՜ᳯጱฎෆ֛ጱservice order҅ق᮷ᥝٟڊ๶҅ଚ
Ӭᵱᥝ಩1250ԞٟӤ)
170, 1400, 1400, 2500, 3500, 1250., 162, 161, 160

C SCAN: च๜Ӥ੪ฎӧᓕߺࣁ᮷ض๖፳ӞӻොᩳݻӞፗᩳکᬯӻොݻӤ๋ݸӞӻcyl҅ᆐٚݸፗളࢧ
ጱ0҅ٚᩳݻᬯӻොک

Unfairness: ྲইইຎӞӻrequestᥝrequestጱฎӞӻஉᬱጱcylinder҅ᮎԍsstfݢᚆ੪࿞ᬱԞ᥶݊
ӧک՜

Give at least ten examples of the kinds of metadata stored for a DBMS.

number of records
number of unique keys
column names
data types
field sizes
flags
permissions
creation times
creator ids

record layouts
buffer pool sizes

Justify the use of metadata from the perspective of both a DBMS and a DBA.

Write simple SQL queries (on paper) to query an RDBMS catalog for metadata that is of interest to a
DBA. For example, write simple SQL queries to join catalog tables and gather information from
selected DB2 catalog tables.

Provide arguments for storing RDBMS metadata as a table rather than as a flat file or some
other data structure.

Compare and contrast the record layouts for fixed-length and variable-length records in a DBMS.
Provide an advantage for each.

Explain why rows on a page might be relocated.

Compare and contrast the page layouts for fixed-length and variable-length records in a DBMS.
Provide an advantage for each.

Justify the use of free space within a page, and intermittent free pages within a file, for an RDBMS
table.

Given probabilities of average string lengths, determine whether it makes more sense to use a fixed-
length field, rather than a variable-length field.

Other

Indexes

We can retrieve records by:

Scanning all records in a file sequentially
Specifying the record id and going there directly

File structures that enable us to answer such value-based queries efficiently

value based queries:૶๕᭗ᬦᬯӻහഝӾጱ຤ӻਁྦྷጱ꧊݄ತکᬯӻහഝ

Find the name of the student with student id 86753091
Find all students with GPA

Dense Indexes store one key/value pair per record in the table. The value is often the rid
pointer that points to the full record on disk corresponding to the key

Clustering Indexes: ፗള໑ഝᬯӻindexጱහഝय़ੜഭଧԧහഝࣁdiskӾጱ֖ᗝ҅ಅզইຎᬯӻ
clustering index᯾ਧԎጱฎՋԍᤩአ֢“where” queryጱහ꧊੪տஉො׎ҁ᮷໑ഝහഝय़ੜഭଧঅ
ԧ҂

Metadataғdata about data

System Catalogs

contains metadata

e.g., # of records, # of unique keys, record layouts, column names, data types, field size,
flags, permissions, creation times, creator IDs

There are about 150 catalog tables in Db2 version 11:

SYSIBM.SYSTABLES
SYSIBM.SYSINDEXES
SYSIBM.SYSKEYS

Stored in database DSNDB06, can be accessed through sql

Record Formats

Fixed Length

ӧݶጱਁྦྷᳵፘᵍጱᳩଶ᮷ฎӞ໏ጱ҅ฎfixedጱ

ᮎԍԅՋԍݝᵱᥝL1޾L2੪ݢզᏟਧ࣎ࣈԧޫ
Page format for fixed length records

ૢᬟጱ੪ฎೲᆙᶲଧਂفᦕ୯҅ڹᶎጱฎق᮱ਂ፳ጱ҅ᘒݸᶎጱฎᑮጱҔᘒݦᬟጱڥڞአԧӞӻӳ
ᥜ๶ᦕ୯ᬯӻslotฎӧฎᑮጱ҅ݦᬟጱกดྲૢᬟጱๅঅ҅ࢩԅૢࣁᬟጱਫሿ᯾҅ইຎ౯ժᥝڢധ
slot1ጱᦕ୯҅౯ժ੪տ಩record id᮷ᕳදݒҁݻӤᑏۖ҂

Variable Length

ᶎጱݸݸᶎํӻੜੜጱ೰ᐏᒧ೰ᐏᬯӻᦕ୯Ӿํग़੝ӻਁྦྷ҅ᆐڹᒫӞᐿጱrecord format᯾҅ࣁ
ӧݶᳩଶጱਁྦྷᳵ᮷տํӻړᵍᒧ๶಩ਁྦྷړྦྷਁ޾୏

ݸbase addressԏݸӻਁྦྷጱbase address҅ᆐݱ፳ਂضڦړᶎڹᒫԫᐿጱrecord format᯾҅ࣁ
ํӻࢴਧጱړᵍᒧړྦྷਁ޾୏҅ളӥ๶੪ݢզತݱکӻਁྦྷ

Page format

PCTFREE̵FREEPACE̵REORG

lecture 01 pA-12

Notation :

g-
* fitzedata entry ,

45 , rid >

Bt tree ¥E - T dynamic balanced tree structure

dynamic ffakf.IE easy to change the idea (grow & shrink

balanced FEiah.BE heigh-IT-E.IT#I-t94..tprs

Bt tree B2¥É : Fan out =
K

Search root : µ Rage

} 0 Clog ,=Nj height =p : K
"

Insert

height
--2 : K2

Delete

- - -

f- : fan out : - T node-1%4-47 child node

H : # leaf pages

¥
IT pointer AA%É.IT#J- range search

.
#¥- text JFK]

-885¥ 't 219 GAF-S-t-F.AZ?-Ff3ointetGAiI.fIf-EE 213

¥4 nodedfa.EE#-zIg&-H-to-ot-f-fEfi4*ETnode
AFIF"zFT¥kÉ⇒

dense vs sparse

dense : one key , rid pair for each record in the table

sparse : one < key , rid> for a page, so in that page , everything
will be greater than key

* Insert (data, L)

1. Find correct Leaf L

2 . Bet data entry onto 2

if I has enough space , put !

else :

split CL)

split CLJ :

if his leaf page :

1. find middle

2. split L into Li and L2 delimit :-(ed by
the middle ,

Li := LI : middle] , ↳=L [
middle:]

3. copy up the middle

↳ insert (middle , parent

else if 2 is internal page :

1. find middle

2. split L into Li and L2 delimit :-[ed by
the middle ,

Li := LI : middle] , ↳=L [
middle-11 :]

3. move up the middle

↳ insert (middle , parent

else if his root Rage ;

1. find middle

2. split L into Li and L2 delimit :-[ed by
the middle ,

Li := LI : middle] , ↳=L [
middle-11 :]

3. New root with ene key : middle

4. height -4 ;

else :

,,

Redistribution

1. between leaf nodes

t f☒¥yII
☒III"☒E4I

ftp.Et-if#JtxS-&--2o.hIifD-JEa2I . minimum occupancy (2) ZÉk2ÉI¥#B-

1. fE&±;¥¥;¥⇒¥ redistribute Hi¥¥i ctedisburitej.CZ#asE-)

2. 1111-11%-204

f☒¥II
☒III"☒⇒I☐

3- Move 24$ to F

II→☒E4I
4. £8 27$ copy up ,

replace 24

of'¥¥⇒
☒III ☐

2. between non leaf node yyy.im#ggEgbou-hn.zo--atEaEE-7?-f&--T 20 ⑦Fit !

8 8

Biffy If redistribute Got¥-09M # T node

1. f-⑦ 17 ,
20 ¥§EeAEf IIHF node

•

☒¥¥I☒III

2. Replace 22 with 17

i.IE#I☒III

Merge

1. between leaf node

☒⇒¥¥¥É÷=☐→☒¥¥
¥j¥HI 24

1. &É¥¥ÉÉ redistribute
.

cF¥É

2- £É£±¥ÉE merge C¥É

↳ a . # ¥+24

2. Merge ☒III ¥ ☒III

3. f-827¥ 'T 2-44 IFIPH.tt#CEiF--!.I.*&'ET.non1eafaageLt-KJ
minimum occupancy GATE

f☒¥II\
,

1M¥ ☒¥ñ☒

2. between non leaf node
.

o o BA •

•*aq•-IwhfT§

=g2¥¥
-

merge oak # T node

1. FE 17 lull down

2. merge

0

¥-164k , EH} ¥57.-1=14-1941111-85*24
Steffi

É&±¥¥I¥⇒¥ redistribute try-¥¥i

tE&±¥¥i¥→¥ Merge &↳¥¥i

Lecture 02

& select every thing will never go to index page

* it ¥8,81459T index zaget-a-ih-f-JEIHS.at/iE.#-T2err--&----Teage
→ 4T Cft to -18)

& * 4 - level : heigh 3 G. 1,23

k¥.EE?a-- A
- : best case scenario

0
:

.

index Iiib 4k¥>

¥t&¥t leaf

¥4.5
.

-1--6 15 k* , _¥& rid

f¥Q§g¥É¥ - T page

& Worst case

i.
.

toot Always 1

Each layer ,
always 1J

i¥A¥tiJ¥¥t -F-a.fi#EiI2i-niFisTI--t&GG
¥wF#

,

£4k worst case_*-_ it

¥# ⇐ :¥tÉ¥d leaf page

8*41%-7 4J -11 pages from

index

421--3%-8- data table

☐
→

'

E-Ea a %n¥¥?ExS¥ ?¥ q

og
→I - Ea 105%-1*-4*47

⇒& in it is

1T¥ -£4 If

Lecture 03

→ É¥¥F Extendible hashing , 1T£ Er-12244

Lecture 04

worst case scenario for hashing : OCN)

* hckeyj = Ca & Key + b) % N usually works Netty well

* a bucket is a page

Extendible Hashing Calculation :

1. f¥fF£ At * & I, - T data entry £458s'¥i¥

2 , titty - T index page *Fit -14=5--559 data entry

3.
'

£. record / # tree / page = # rage

lecture -1

cylindrification

phase I sort : average transfer time

¥ ±, -4 Be t.tl?Z.&ah.na-tiF

Transfer time : # pages (number of pages in memory) • XM#ages
+ rotational delay : 0

+ Long Seek : 10ms

+ Shore seek : f# cylinders (number of cyls in memory)
- d) • short seek time

fize size

F⇒'¥±, 132 fill HA 2282 : # till = taeimainmemoy

ftp.#-tI-E0 : 2. B2 time . # fill

=
R R W

phase 2 :

¥, # cylinder needed for file average transfer time

A-¥E→tI, time for 1 cylinder

Transfer time : # pages (number of pages in cylinder . XM#ages
+ rotational delay : 0

+ Average seek : 10ms (data - dearden-13 , I'Lf±FEHGBkf¥¥¥£¥=¥
F.EKA SR, -1*21-71%912745=4%7 assume worst

¥ E. ☐fifi

2. # cylinder • time /cylinder
←
Raw

* Cylindrificatioy

¥ phase 24, 8K¥ input buffer ¥ output buffer

x-f-E.ffy-afiF-GM-Zz.INT

In.☒f : 2 . # cylinder • time /cylinder
I
☒ • W

R : # cylinder . time /cyl

W : # cylinder . time /cyl

iÉ-¥
.

,
j¥Etp # cylinder out put buffer E. '-Eft writing that i -7

- :2¥j¥r_ merge 47325s ,
4- disk I seek ¥jtÉ¥± Cheng Seely -#¥5

- 1 cyl , G-5TH, #¥- outfit buffer It lcyl , 17-448--4-8=11%-9 cy / ¥*fBg
ZIG - iz LS

,

4→_¥ outfit butter I# Ey 2cg / agita , EEE

Ey. # a cyl 4k£
- =1 ↳

.
#"¥-55 ! → w=¥,{¥Y%→w#

• time / cyl

Lecture

2021-10-07

Pre Class

2021-10-12

Pre Class

2021-10-14

Pre Class

2021-10-19

Pre Class

2021-10-21

Pre Class

2021-10-26

Pre Class

Chapter 10 Tree-Structure Indexes

Learning Goals

Take away

Lecture

2021-10-07

Pre Class

index entry: <key, pointer>҅ᆐݸkeyݢզአ຤ӻfieldጱ꧊๶๊դ҅ᬯ໏੪ݢզ໑ഝkeyጱ꧊๶ᬰᤈள᭛൤ᔱ

̵

Ӥᶎᬯ໏ৼጱӞӻӳᥜ੪ฎindex page҅ᆐࣁݸӞӻindex page᯾ᶎ҅keyጱහᰁ᮷ྲptrጱහᰁग़Ӟ҅ࢩԅkey

ጱ֢አฎseparator

ۖ๢ғindex fileᡱᆐྲdata fileᥝੜஉग़҅֕ฎ՜ׁᆐݢզեinsert޾delectableஉἋᅸ҅ಅզ౯ժ֜ӧࣁ

Ӟञindex fileӤᶎ҅ٚୌᒈӞӻindex fileғ᭓୭ጱୌᒈindex file until the smallest auxiliary structure fits on

one page

B+ Treeғa balanced tree in which the internal nodes direct the search and the leaf nodes contain the data

entries.

ᬮ፥ጱฎํݝleaf಍ਂ፥ྋጱdata entry

A data entry is a <k, rid> pair, where rid is the record id of a data record with search key value k.

ٌਫentry᮷ฎᬯ໏ጱkey ptr pair҅ݝӧᬦdata entry pointerӾᥝԍฎ೰ݻdata pageጱ೰ᰒ҅ᥝԍፗളฎ

data҅data entryጱptrፗള೰ݻහഝҔᘒindex entryጱpointer೰ݻጱڞฎӥӞӻindex page

Operations (insert, delete) on the tree keep it balanced.

Minimum occupancy of 50 percent is guaranteed for each node except the root

Format of a Node

non-leaf node

ᕪَࢶ᯿Ⴥғ

P0೰ݻጱsubtreeӾ҅ಅํጱkey᮷ੜԭK1

if , Pi೰ݻጱsubtreeӾ҅ಅํጱkey K᮷

Pm೰ݻጱsubtreeӾ҅ಅํጱkey᮷य़ԭ

leaf node: denoted as

ଚӬಅํጱleaf node᮷ᤩchained౮doubly linked list

Searchғ

2021-10-12

Pre Class

insertጱ෸҅ײইຎӞӻnodeჿԧ҅ଚӧฎᶋ஑ᥝsplit՜҅Ԟݢզ੤ᦶredistribute՜҅ྲইӤᶎᮎӻ10.9ጱ

໅҅ইຎᬯ෸ײᥝ8فےᬰ๶҅ݢզݎሿૢහᒫԫӻnodeᬮۃӥӷӻ֖ᗝ҅ᬯӻ෸ײਠݢقզ಩8ൊᬰ݄

֕ฎଚӧฎྯེinsert᮷ჿ᪃redistributionጱ๵կጱ҅ইຎsiblingჿԧጱᦾ੪ӧᤈ҅ಅզᵱᥝض༄ັ҅ٚ፡፡

ฎsplitᬮฎredistribution̶֕ฎইຎᬯӻinsertionݎኞࣁleaf levelጱᦾ҅౯ժ๜๶੪ᥝretrieve neighbour

node҅ࢩԅprev-next neighbourਂࣁԭleaf node҅୮insertݎኞጱ෸ֵܨ҅ײᥝsplit҅౯ժԞᵱᥝ᧣ෆprev-

next neighbourҁsplitጱᦾࣁሿํጱsiblingsӾᳵےग़ԧӞӻnode҂

delete

The situation when we have to merge two non-leaf nodes is exactly the opposite of the situation when we

have to split a non-leaf node. We have to split a non- leaf node when it contains 2d keys and 2d + 1

pointers, and we have to add another key--pointer pair. Since we resort to merging two non-leaf nodes only

when we cannot redistribute entries between them, the two nodes must be minimally full; that is, each must

contain d keys and d + 1 pointers prior to the deletion.

redistributeጱ఺௏੪ฎ҅୮౯಩ፓຽᥝڢᴻጱ꧊ڢᴻԏ҅ݸፓຽᥝڢᴻጱ꧊ಅࣁጱpageӧჿ᪃minimum

occupancyጱᥝ࿢҅֕ฎݎሿইຎ՗sibling೉Ӟӻentryᬦ๶ጱᦾ҅ፓڹጱpage޾sibling᮷ᒧݳminimum

occupancyጱᥝ࿢҅ᮎԍ੪೉҅ᬯ੪ݞ؉redistribute

mergeጱ఺௏੪ฎ҅୮౯಩ፓຽᥝڢᴻጱ꧊ڢᴻԏ҅ݸፓຽᥝڢᴻጱ꧊ಅࣁጱpageӧჿ᪃minimum

occupancyጱᥝ࿢҅֕ฎݎሿইຎ՗sibling೉Ӟӻentryᬦ๶ጱᦾ҅ፓڹጱpage޾sibling᮷ӧᒧݳ

minimum occupancyጱᥝ࿢҅ଚӬݎሿ҅ইຎ޾ፓڹጱpage޾siblingጱentryනࣁӞ᩸ጱᦾ҅entryጱහᰁ

ྋঅࣁd2޾dӾᳵ҅ᮎԍᬯ෸ײ੪಩՜ժනࣁӞ᩸҅ᬯ੪ฎmerge

ԡ᯾ᶎ൉ڊጱੜੜጱrefinement੪ฎ҅ࣁ༄ັsiblingጱ෸ײ༄ັӷӻsibling

redistribution is guaranteed to propagate no further than the parent node.

2021-10-14

Pre Class

static hashing schemeฎӞᐿਂؙཛྷୗ

உ؟Ӟӻbucketጱᵞٌ҅ݳӾྯӻbucket᮷ᯈ॓ԧӞӻpossibly additional overflow pages

Ӟӻbucketᤰጱฎdata entryҁӣӻalternative҂

Ӟӻ෈կՁํbucket aکN-1

Searchғ

searching a bucket requires us to search (in general) all pages in its overflow chain

apply hash function to data entry :

use ݄ತکbucket

Insertғ

apply hash function to data entry :

use ݄ತک੒ଫጱbucket

ইຎbucketဌჿғනفdata

ইຎbucketჿԧғ

ᶎallocateӞӻෛጱoverflow pageݸᬯӻbucketࣁ

಩dataනࣁpageӤ

಩ᬯӻpageفےᬯӻbucketጱoverflow chainӤ

Deleteғ

apply hash function to data entry :

use ݄ತک੒ଫጱbucket

ইຎdataӧฎࣁoverflow chainӾጱӞӻoverflow pageӤ౲ᘏࣁoverflow chainӾጱӞӻoverflow page֕ӧ

ฎᬯӻpageጱ๋ݸӞӻғፗളڢധ

ইຎdataࣁoverflow chainӾጱӞӻoverflow page֕ฎᬯӻpageጱ๋ݸӞӻғ

dataڢധ

಩page՗ᬯӻbucketጱoverflow chainӾᑏᴻ҅නفfree page

If we have N buckets, numbered athrough N ~ 1, a hash function h of the form h(value) = (a *value + b)

works well in practice. (The bucket identified is h(value) mod N.)

the number of buckets is fixed.

Note that two different search keys can have the same hash value.

Extendible Hashing

಩bucketᬯӞ੶ᕳړᵍ୏҅ضአӞӻdirectory݄೰ݻbucket

Search for data entry<k, rid>ғ

hashҁk҂ڊᓒض

ֵአhashҁk҂ጱԫᬰګᤒᐏጱݸӷ֖݄ਧٍ֖֛کጱbucket

՗bucketӾತٍ֛کጱහਁ

Insert a data entry <k, rid>

hashҁk҂ڊᓒض

ֵአhashҁk҂ጱԫᬰګᤒᐏጱݸӷ֖݄ਧٍ֖֛کጱbucket

ইຎbucketํ֖ᗝғනکفbucket

ইຎbucketဌํ֖ᗝғ

ᵱᥝsplitჿԧጱbucket

᯿ෛᦇᓒbucketӾಅํጱhash(k)

໑ഝhash(k)ጱԫᬰګᤒᐏጱݸӣ֖݄๶ړ܄ሿࣁጱbucket޾bucket image

ইຎෛጱbucket imageጱbitଚӧࣁdirectory᯾ᶎጱᦾғ

doubleሿࣁጱdirectoryզਂනbucket

d೰ጱฎdirectoryಅᵱᥝጱ֖හ҅౮ԅglobal depth҅୮directory doubling occur҅global depth++Ҕlocal depth

ฎper bucket҅୮bucket splitԧӞེԏ҅ݸlocal depth++҅ଚӬsplitڊ๶ጱimage bucketտํ޾ԏڹጱbucketӞ

໏ጱlocal depthҁᬯӞ᫪splitےԧӞԏݸ҂

ইຎd == local depth҅୮ᬯӻlocal depthጱbucketᤩsplitԏ҅ݸ஠ᶳᥝdouble directory

deletion:

if the removal of a data entry makes a bucket empty, the bucket can be merged with its split image

if each directory element points to same bucket as its split image, we can halve the directory

Bulk Loadingғ

The first step is to sort the data entries according to a search key in ascending order.

We allocate an empty page to serve as the root, and insert a pointer to the first page of entries into it.

When the root is full, we split the root, and create a new root page.

Keep inserting entries to the right most index page just above the leaf level, until all entries are indexed.

2021-10-19

Pre Class

Linear Hashing

ᵱᥝڥአfamily of hash functions: with the property that each function's range is twice that of its

predecessor.

ெԍ؉کጱғby choosing a hash function hand an initial number N of buckets 2 and defining (value) =

h(value) mod (N)

If N is chosen to be a power of 2, then we apply h and look at the last bits; do is the number of bits

needed to represent N, and = + i.

ྲইNฎ32҅ᮎԍd0੪ฎ5ҁd0 is the number of bits needed to represent N) ,h0੪ฎᓌܔጱh mod 32҅h1

੪ฎh mod ҁ ҂

level: indicate the current round number and is initialized to 0

Next: the bucket to split

: number of buckets in the file at the beginning of round Level

basically, ࣁround level᯾ᶎ҅ํݝ ޾ տᤩֵአ҅fileڹᶎጱbucketտᤩӞӻӞӻጱsplit҅ᬯ໏

Ӟ᫪ӥ๶҅bucketጱහᰁտԙԫ

Search for <k, rid>ғ

calculate

ತکbucket҅፡፡ฎވᤩsplitԧ

splitԧғአ ݄ັ

ဌsplitғፗളࣁᬯӻbucket᯾ᶎತ

For our examples, a split is 'triggered' when inserting a new data entry causes the creation of an overflow

page.

Splitғ

use hash function to redistribute entry between current and split image

assign bucket number b + to the split image(bฎሿࣁጱbucket)

Insert <k, rid>ғ

໑ഝ ತک੒ଫጱbucket҅፡፡ํဌํᤩsplit

ᤩsplitԧ҅አ ತکᬯӻk୭ંԭሿࣁጱbucketᬮฎsplit image҅ತک੒ଫጱ֖ᗝ҅፡፡ჿԧဌ

ჿҁ۱ೡԏࣁਂڹጱoverflow page҂

ဌჿғፗളفے

ჿԧғ

split currentѺᥝဳ఺ጱฎဌ҅ᬯӻinsert᥶ݎԧӞེsplit҅֕ᬯӻsplitଚဌํݎኞࣁoverflowጱ

ጱ֖ᗝکො҅round robin᫪ࣈጱݻnextಅ೰ڹፓࣁኞݎො҅ᘒࣈ

಩ሿࣁጱᬯӻkفےᬯӻbucketጱoverflow page

next++

಍տincrement nextݸsplitԧԏํݝ

2021-10-21

Pre Class

internal sortአጱ᮷ฎin memory sort҅ྲইquick sort

Run: refer to each sorted subfile. ੪ྲইmerge sortڠ᭜ጱᮎԶՋԍcopy

Simple Two Way Merge Sortғ

ᬯሻ఺޾دmerge sortஉ҅؟੪ฎmerge sort breaks downԧԏݸ

ᒫӞӻpassํ ӻpage҅ԏྯݸӞӻpassғk--ҁӷӷݳଚ҂

number of passes: ҅Nฎnumber of pages, ྯӞ᫪҅ྯӞӻpageํӞӻio

overall costғ

External Merge Sort(੒Ӥᬿጱrefinement)

refinement1ғ

ฎӞӥ᧛ࣁsort internallyӞӻpageҔྲই[2, 1] -> [1, 2]Ҕᘒሿݸጱ᧛҅ᆐܔฎᓌݝڹԏ҅ײpass 0ጱ෸ࣁ

Bӻpage҅sortᬯBӻpage҅؟Ӥᶎጱࢶ઀ᐏጱᮎ໏҅Ӟӥৼ᧛ԧࢥӻpageҔᬯ໏ݢզ಩run՗Nٺ੝ک

N/B

refinement2:

ྯӞ᫪҅አB-1ӻpage؉input҅ᆐݸӞ᩸mergeۃکӥጱᮎӻoutput

In doing a (B - I)-way merge, we have to repeatedly pick the 'lowest' record in the B-1 runs being merged

and write it to the output buffer. This operation can be implemented simply by examining the first

(remaining) element in each of the B - 1 input buffers.

External Merge Sort

ྲইሿࣁᥝsort 108ӻpages҅ํ5ӻbuffer pages

᭜ceil(108/5) = 22ጱsorted runڠsortᬯ108ӻpages҅ࣈአ5ӻbuffer pages҅ԲӻԲӻڥ .1

2. ಩ࢥӻbuffer pages୮֢ฎinput҅Ӟӻbuffer page୮֢ฎoutput҅ᆐࢥݸӻࢥӻsorted runᬯ໏

merge҅merge౮ceil(22/4) = 6ӻsorted run

3. ಩مӻbuffer pages୮֢ฎinput҅Ӟӻbuffer page୮֢ฎoutput҅ᆐࢥݸӻࢥӻsorted runᬯ໏

merge҅merge౮ceil(6/4) = 2ӻsorted run

ۑ౮1ӻsorted run҅੪merge౮ݒӷӻsorted run҅mergeӞེ҅ݸ๋ .4

2021-10-26

Pre Class

clustered indexғᧆᔱ୚ӾᲫ꧊ጱ᭦ᬋᶲଧ٬ਧԧᤒӾፘଫᤈጱᇔቘᶲଧ̶ಅզ᧔ইຎӞӻtableฎclustered

indexጱᦾ҅౯ժݝᵱᥝಚᬦ՜ጱb+ tree੪অԧ҅costፘ୮ԭtraverse the tree from root to the left most leaf,

plus the cost of retrieving the pages in sequence set, plus the cost of retrieving the pages containing the data

records

unclustered index: ੪ฎ᧔Ძ꧊ጱ᭦ᬋᶲଧ޾ᇔቘᶲଧ෫ى

worst caseᒵԭdata recordsጱහᰁ

double buffering: ಩ಅํጱbpړԅӷ᮱ֵࣁ҅ړአӞ܎ጱbpጱݶ෸҅refillݚӞ܎bp

Chapter 10 Tree-Structure Indexes

Learning Goals

List the 3 ways or “alternatives” of representing data entries k* having key k, in a general index

1. whole data record with search key k: <k, record>

2. <k, rid> where the rid signifies the location of a jingle data record (row in the actual table) that has search

key k

that rid points to the location instead of the real data of the data entry

3. <k, list of rids of data table records having search key k>

Justify the use of indexes in database systems.

Using indexingݢզ

Explain how a tree-structured index supports both range and point queries.

Build a B+ tree for a given set of data. Show how to insert and delete keys in a B+ tree.

Analyze the complexity of: (a) searching, (b) inserting into, and (c) deleting from, a B+ tree.

Explain why a B+ tree needs sibling pointers for its leaf pages.

Explain why B+ trees tend to be very shallow, even after storing many millions of data entries. Equivalently,

provide arguments for why B+ trees can store large numbers of data entries in their pages.

Explain the pros and cons of allowing prefix key compression in an index.

Given a set of data, build a B+ tree using bulk loading.

Provide several advantages of bulk loading compared to using a large number of SQL INSERT statements.

Estimate the number of I/Os required to traverse the records of a large file (whose records have key k) using B+

trees for: (a) the clustered case, and (b) the unclustered case. Justify any assumptions that are needed.

Using a diagram, show the principal difference between a clustered and an unclustered index.

Provide examples of when clustering doesn’t help performance, and may actually hinder the performance of

certain kinds of queries.

Take away

indexᔱ୚೰ጱฎӞӻୌᒈࣁdata entryӤጱӳᥜ҅ইຎဌํindexጱᦾ҅ᮎԍࣁ൤ᔱ຤Ӟӻٍ֛๵կጱdata

entryጱ෸҅ײ੪஑ೲᆙᶲଧӞ๵Ӟ๵ጱತ҅ᆐݸ፡፡ᬯӻහഝฎӧฎᒧݳᥝ࿢҅ୌᒈindexጱᦾ҅ݢզํӞӻ

ᔄ֒<index, data>ጱӳᥜ҅౯ժݢզض᭗ᬦᔱ୚ਧٍ֖֛کጱdata݄҅ٚತᬯӻdata̶ᘒਂනindexጱොୗԞݢ

զᤩս۸

ಅզtree structured indexing೰ጱฎਂනkᬯӻindexጱದૣ

B+ tree

m is the number of keys in a node

is m consistent for every node?

for each node, we want to occupy at least 50% of the node's available entries:

each node contains d <= m <= 2d entries

d is called the order of the tree

fan-out = m+1 => number of pointers to child ndoes in a node

N = number of leaf + internal pages => ಅզฎ#total pages - 1?

height೰ጱฎ௛ጱ੶හҁ۱ೡroot҂-1

च๜Ӥd٬ਧ፳Ӟӻnodeํग़੝ӻentries҅m٬ڞਧԧӞӻnode೰ݻԧग़੝ӻchild nodes

look up

look up b+ treeच๜Ӥ޾look up binary treeጱ඙֢ฎӞ໏ጱ

insertion

copy up VS move up

copy upݎኞࣁleaf node҅୮ᵱᥝsplit leaf nodeጱ෸҅ײ಩leaf nodeጱӾᳵᥝۆړጱࣈොڊݐ

๶҅ᆐݸcopyکparentӾ҅ᬯӻ෸ײጱparent node޾leaf node᮷ํݱӞӻᥝۆړጱӳᥜ

move upݎኞࣁparent/root node҅୮ᵱᥝۆړroot nodeጱ෸҅ײտፗള಩delimiterᕳݻӤᑏ

ۖ҅ᬯӻฎ෸҅ײdelimiterݝտਂࣁԭෛጱroot

deleting

look up

delete

check for needs for redistribute

ইຎڢԧԏݸnodeጱentryහᰁ੝ԭd҅ᮎԍ੪ᵱᥝredistribute

borrow entries from adjacent nodes that have same parent

if redistribute fails -> merge

Lecture 01 & Lecture 02
MT}

* Access path : Different ways in which rows of a table can be retrieved

& Query vs Relational Algebra

Select Ti Choiectionj

where 8

join ☒

& Nan :

on the fly : as you are doing the previous stea
, do this too

Tlsname con - the fly)

I
& bid

"j^
""" "

' """ '%)

CPNL Join

µ

-

☒ Sid

↳
& table scan

↳ if the target data page is a very tiny table , just perform a table scan

* j¥f¥ index?÷*tEaf¥¥¥E narrow down entry AS

44J : SELEI Context, ¥710T ratings -9=2 too ages

From sailors ⇒ Rating Vs Age ¥-5k rating ☒451¥# Eft rating # { Ff

where voting = 10 AND - Tage / EAT age.%AF-t-Tgatingtzh-it.b.EE. '&ÉI← to # Go =/ooo

if rating : IÉ-41 rating :b
, £GF¥?É¥; query too T.DE

age > 30

if age : f£¥÷IF 70T sage , query 70*10=700 TDE

* tree index better for range query

* hash index better for equality search

☒ Calculations for an Alt 2 . Bt Tree Index

41K byte/page .

,
1221-10) bytes /DE ,

there are too . ooo tuples

i. we can tie 4k /32=128 DES /page

since we have too , ooo records , we need [4%-000--1 : 782 leaf page

Assume for 782 leaf pages , we have ✗ parent nodes

i $. C128t1){ages/nod# =
782

☒A ¥Et¥Ff 128Tkey , 22 fanoue : 128+1

✗ =T¥¥ = ? Zarene nodes

And I root

a root
i.

7
•

782 leaf

* calculation of cost :

clustered Index

* ¥44T I, index eage-IIEI-3-g.IT : root + index + HE # leaf eases

F- I, ¥¥i¥ access B-¥ data Rages : RF . # Data pages → ☒-¥ clustered index # , physical order ¥> logical orderT¥£§

- Ek, #"4*417-74. t¥¥¥¥rt I #Ask takesE.IE/T+-data2ageIz-k----EE,A3ki#YiJ? ¥ñhH¥E± table : RF . #Data page€77
Uncluttered index

¥74T I, index eage-IIEI-3-g.IT : root + index + HE ## leaf eases

F- ±, - 4- data page ?¥÷ access b- toles : RE ¥ # totesData pages ⇒ 2=18 un clustered index 'd, FÉ

↳
'

¥-1k # data rages fifth.it#rF-tFFE-Y-ixIs- ¥¥
txt , *-1-7+4=1 data page#TY
¥5m if it * f- * # tuples /rage
* ¥5s Init ¥54745 data rape

[
*Fiji in memory hash table ¥45kmatch

For each ¥-2 layers from R :

foreach page from S :

for all matching in -memory tuples , add

f.LI#A9?I19Bpforout9ut , 19133 for inner, B- 21131 for outer . *sizes

FH. -1-8132-1 C PII, output) 9- 9age evenly sqlited between input & output .

Index Nested Join

* Use index to retrieve inner table

For each layers from R :

foreach page from s that satisfied condition based on index :

add < t ,
s >

*

cost :

¥"
s

£1k .
-
-

1. I Assume Bt tree index
,

the cost to find the leaf is ③ 1/0.5
.

1.2 Assume hash index, the cost to find the bucket is 1.2110s
.

2. Assume we already found the bucket :

if clustered : one more Ilos per outer entry

y anyway , one µ µ meaning;n
* Grobe : thindexff'¥j matching tables

.

✓

Cost : µ -1 CM pages] . (✗ +ui¥,) * (# look Y + a)

t

if we need

to fetch tuple

cost of sort Merge Join :

Assume R : tooo {eyes , S : Joo {ages ,
both sort in

two passe

sort : 1000 * 2 * 2 1-500*2*2 = 6000

d- tr I I

*
t /W 22asses s

§ goin : Additional scan for both tables

1000 t Joo = (Joo

] 7500

Sore Merge Join Algorithm

query block :

fftttc-a-tribu.ee/i#FROM relation list1wHE☒€t÷m1And_..tetm#
Reduction Factor : fractions of tuples that satisfies a

conjunct

↳ Reflects the impact of the term in reducing the result size

* Push selection ahead of join

-

⇒

& join cost too much
,
list.si#FnSelect.E7-ioinItt3-KIk5g-

Hash Join

1. {atition phase

-1
¥ :/1-

① Kitt flash function Iet> R 2artit.in Eh#
②#Elf Hash function ⇒ £8s partition EH

2- Join Phase

For i=1 to 13 - I do :

Ca) Take partition Ri 's Eases and hash it again

cb) For each page in S :

read the zase

for each tuple on the page :

any h , to see if there is a join

clustered :
cost = cheated # of internal pages to get to the leaf level

+ expected # of qualifying leaf {age
+ expected # of data pages

2021 - 11-25

→ Transactions without commit statement : automatic commit.

↳ crashes → roll back

to

To use multiple commits

→ Tx should be shore

→ consistent means that the DBMS will guarantee all constraints.

→ Roll back = Above

→ Read must go before write

* Strict Two Phase locking (Sttice
234

↳ Each transaction obtain an J cshared) lock on the DD

object before reading ,
and an X☒ (exclusive) lock before writing it

.

S → Before Read

✗ → Before White

All locks released after completion of the -4

* lock Based concurrency control

ease sooner

#
locks E.

complete

"

.

release 22L

strict 22L

Conservative
22L

W

requires all lock from
stare

* Domino Effect

Ti-
✗
abort

I- ¥-
d
Aff above

* Read → share lock

write →
exclusive lock

* 2¥ 2.4¥#I swap , -7T¥
all conflict equivalent schedules

f¥Ét serial

* Conflict setializable
→

serializ-ablesetializ-ab.IE
→

conflict setializable

☒s &jL&4 Conflict serializability . 4-244*7.FI#-i--XXtxf .EE#T-fIIKJ , ☒HE
fEo¥.IE?It-Ek,F%FEI--Ejsetiali2-abk

B -12-71-1 C
A

-"f¥→"f¥→*or)
WCZ)

"÷☒⇒¥¥¥④UCX)

commit
wcq, ☒CZ)

WYD ¥

In {recedence Graph

1- Node : T ctransaction)

z edge : Ti → Tj itf an action of Ti Precedes and conflicts

with Tj

2 View serializability

* Conflict
serial .

-

2-able could Never a legal transitions

from going ahead ,

Ju - s=> s
viewseriulizable
v

seria /izale

22L : strict Two - Phase Locking Protocol

Strict 23L only allows conflict serializable and

recoverable schedules .

(release at
commie time

& Read → share lock

write →
exclusive lock

& Wait for graph :

?⃝ → ①
→ Are from Ta to B means

that Tse is waiting -10L

⑤
Ts 's lock

Lock Management

✗CA) → request A

cascading abort : situation in which the above of one tx forces
the abort of another tx .

if safe i.☒
insert) : release parent

else : not release
parent

* Index locking →

* predicate locking

Re uncommitted : No locks

0 0 0

(a) ④ → ⑤ T2 → -13
No

9 txY ←

Ti→Ty①

(b) No , Not C-s , there contains

no cycle at the graph

(c) T ,
→ Tz → Ts

→ Ty

(d) Since
transaction only commit after all

txs that they read from committed.

LSN : log sequence number
,

LSNS are always increasing

write Ahead log :

* Each data page contains a 2age
↳ The LSN of the most

recent log record for a

change done to that page

* flushed t.SN : maximum ISN flushed

* force the update log record to disk before the data page gets

to disk
WAL send the log record out to disk before transaction

protocol commits

Oaidate

Commit

↳ """d" ?⃝""EndCLK C compensation log record,

↳ created before undoing a previous

uzdate action

↳ take place during an

'

about ur recovery

↳ contains ↳ 14 of next log to be undone

* Transaction Table CTT,

↳ TXID

→
change to u ie??n

crash recovery
K> Last LSH

↳ Status (
in - progress, committed, aborted

☒ Dirty lase table

↳ one entry tfor each dog in the bg

↳ contains [recLSH ,
: the LSN of the log record which first caused the page

to be dirty -1

↳ finery is removed when the page is
.

written to disk.

* checkpoint : periodic snapshot of the state of a DBMS, used to reduce recovery

time.

.

begin - checkpoint : yecord

end- checkpoint : record contains TT & DPT
.

↳ store the 254 of the checkpoint rec in a safe place

* No attempt is made to force dirty pages to disk .

↳ STEAL NO FORCE
.

.
:

At commit time

* Write the commie record to the log

* All log records • up
to

.

the fx 's lase LSM are flushed
.

.

↳ guarantees
that flushed LSNZ tastiest

↳ flushes →
.

sychronous.lt#I-tSAlgorithm :
i

-

① CRASH .

d. go back to
last

.

checkpoint

2. stare analysis (Rebuild TT & DID
.

.

.

3- Find smallest re in DPT after analysis

↳ earliest of the DPT

4. fredo all step from
that

,

point

until the crash

g- , undoing
all the uncommitted s.

. .

i

-

.

Analysis → Redo → Undone
.

1

CPSC 404:
More Practice Exam Questions on
Concurrency and Crash Recovery

Last Update: December 12, 2016

1. Consider the following sequence of actions using the ARIES protocol:

LSN LOG
00 begin checkpoint
10 end checkpoint
20 update: T1 writes P61
30 update: T2 writes P72
40 update: T3 writes P95
50 T1 commit
60 T1 end
70 T2 commit
80 update: T3 writes P77
90 T2 end
100 update: T4 writes P72

<CRASH, RESTART>

a) For this sequence of log records, what is done during Analysis after the
crash occurs? For each LSN above (in order), explain how the Transaction
Table and the Dirty Page Table are rebuilt.

b) What is done during Redo? Indicate where Redo starts, and explain how
each LSN is handled during Redo.

c) For this sequence of log records, describe how the Undo phase proceeds,
and show any new log records that result. At the end, take a new
checkpoint.

2. Consider the following ordering S of transactions from the previous set of sample

exam questions. This time, however, we want to convert S via a series of allowable
swaps by the scheduler into a serial schedule S’. Draw a table ordering the actions of
the transactions. Then, draw the final schedule S’. Explain how the swaps take place
so that schedule S’ is conflict equivalent to S.

T2:R(X); T3:W(X); T3:commit; T1: W(Y); T1:commit; T2:R(Y);
T2:W(Z); T2:commit; T4:R(X); T4:R(Y); T4:commit

3. This question deals with multiple-granularity locking (MGL). Suppose there are

locks at the table level, the page level, and the row level. If the object that we want to
lock is at the lowest level of the hierarchy, then we’ll take warning locks (intention
locks) at the higher levels. If we want to lock the whole relation explicitly, then we
can take a shared or exclusive lock at the table level.

Undo -13 ,
-1-1

a
100

✓
µ

b

30
40

y t

p §1. Analysis

TT DN

:÷¥÷t:÷÷:÷÷29J 40

317 | 80

TY | 100 u

cnjpedo from small.se VECLSH in DPT

03) undo all things that are still in progress .

Ti : WCY) C

⇒
Rey, WCZ) CTz : *Cx)

Tz : wcx) cc

-14 : ☒ (X) RCF) C

2

For convenience, use the following compatibility matrix for making your decisions.
(It’s taken from the textbook. It’s fixed and doesn’t change; but, it saves you from
memorizing it. I’ll provide it on an exam if I ask such a question.)

 -- IS IX S X
-- √ √ √ √ √
IS √ √ √ √
IX √ √ √
S √ √ √
X √

a) Transaction 1 (T1): a single SQL statement. For the following SQL statement,

describe the sequence of MGL locks you would take on the table in question,
assuming you want to lock at each level of the hierarchy. Assume that we have
no index on the table.

SELECT sid, sname, age, rating
FROM Sailors;

b) How would your answer to (a) change if we had an (Alt. 2) index on the sid

field? (Let us ignore the part about locking the index, and deal with only the
table.)

c) What is a potential problem with Part (a)? Is there a way we could have a more
efficient locking strategy while still using MGL? Explain.

d) Transaction 2 (T2): a single SQL statement. Suppose that while T1 is executing,

we issue the following SQL statement. Again, describe the sequence of MGL
locks you would take on the table in question, assuming you want to lock at each
level of the hierarchy. Assume that there is no index on the table.

UPDATE Sailors
SET rating = 7
WHERE sid = 1050;

e) How would your answer to (d) change if we had an (Alt. 2) index on the sid

field? (Let us ignore the part about index locking, and deal with only the table.)
Assume that we are using an index to find the rid for the row for Sailor #1050.
Again, assume T1 is in progress. Let us assume that only T1 is running.

Final F¥É¥É¥_ ZE-tB.EE E..

Module 4 :

•
-

-

& ETA pair of Éig action can be swapped

* Commit zÉ¥⇒EIF¥Af-228k

ftp.k#-fkfofitifFEEiE&-z..--I-tEo-T &☒F¥¥t¥z¥y ,
tE%☒±¥÷s¥T±⇐¥-¥É- ¥18522s.EE

introduce Ed#Got conflict

* HEISS's
Ti Ta Ts Tt

Ti Ta Ts Tt
WCY)

Rex)
way

C
Pix)

WCY)
c

→
RCY)

C WCZ)
☒(4) C way

WCZ) C

C Ray
Ray

☒CY)
☒CY)

C
C

Ca) §5F¥g¥évE¥. :
Analysis : '¥¥.IE#-ikE--t9-TTCttansaetiontable)f-sD2TCDirty

Eye table,

µHr
TT :

TxIDµ2astLSNµstat#
DTI :

kyeIDftecLSNI.EE
-1

.
£6k :] -74--1-8*292=1-4¥.sk#?----ascendingly-f7-Lt-zsN

For every Entry :

if Entry == End :

*emove Tx from TT

↳ 7. T.4.endzqt.TT#eXB-ikAiEiEEE-t-
" 341-1=1-25--88 undo ¥-2B

undo

else if Entry ÷ Update :

Iif PageID not in DM : µ÷¥÷.
rechsn.ie#H9-Y----ET3age-i-Fz

' Add 2ageID to DPT &¥¥¥H¥7Kf ISH .

I set tecLSN to LSM

' if Tx ID not in TT :

I Add TXID to TT

Add t.SN to Last LSIY

else :

Replace stored Lsu to current LSH in -1T
else :

4 For commie or above

change the TX 's status to C
"
C
"
or

"A
")

TT

E-

Y ¥z3¥goYÉ
✓

TY 100

I
✓

☒2T
✓

{ageID
reels /Y

u 20

261
272

30

295
40

277 80

Ca) ¥0417.EE#Ef--IiA?..&aerinciz1eE-sEaIiok 3. IF.EE?----FIh-Et-nI--Skf

*& It
Cbd Redo Tak it,

↳ ftp.gi-z-i?-n--fEsCcheck30intsctashJ&iEfGtfLsN ¥-1
" Redo " changes, P&g CIA .

Cc) Undo Queue !

* ¥=¥ . FECK iEEe¥ / log µ

→ FEELuncloak .
to-5%4 loser see

→{ }
→ A -1T$ AG latestLSNFX-I-ftsftj-flas-LSH-T-ff-fas-LSNELH-iuoas.ee

5¥:S
,
:

I. Undo changes : For LSN id , Ando changes to Page

2. HE!¥E€%5 : add CLR to log : Undo -1$
,
LSN id ,

3. ¥88k Tx IEF-ti3-F-t-EIGALSN.IE#f--nextUndoLsN-t7tl-25141
4 , -8-0 nexevndot.SN Tax loses see

FIT. -1 loses setGAGE

§k¥¥¥s¥ :
precedence grain :

* node = -Ttx

* edge from Ti to I iff an action of Ti precedes and conflicts

wish Tj

↳ -Taction A conflict with action B iff :

1 . A
,
B operate on

the same object

2 , At least one operation is W

* Conflict- serializable :
xtt¥£ZE¥ no help Aff -682¥. : S is conflict serialization if s is

EEÉIgEEEE
to

any
serial schedule

.

Conflict equivalent :C Si , sod

1. Sa and Sa involve the same actions

of the same transactions

2- Every pair of conflicting actions is

ordered the same way

xff-biktgk-TAFK.BA : -9 schedule share cedence graph TA cycle at 'z¥, Fit. ,¥_

c- s

Strict two-phase: a transaction does not release its
locks until the transaction has either committed or
aborted.

Two-phase: Locks can be released before commit time
providing the transaction doesn’t ask for further locks.

Conservative Two-phase: C2PL's transactions obtain
all the locks they need before the transactions begin, if
they can’t obtain, they wait

Avoid Cascading Aborts: A schedule avoids cascading
aborts if each transaction only reads values written by
committed transactions.

Setializabk schedule : ¥ - T scheduleGAZETTE as if all tx runs in serial

recoverable ; commit only ater all transactions
whose changes they read

commit

(a) T2 ×→ -13

YY Ix
Y

Ta-514

cb) no cycle → c-s

c) Yes

(d) Yes

AÉ¥¥ñ. :

* Lock :

share Lock block Exclude

Lock ; doesn't block share

lock

Exclude Lock block share

Lock and Exclude Lock

Schedules S1 and S2 are view equivalent if:
– If Ti reads initial value of A in S1, then Ti must read the same value of A in S2.
– If Ti reads value of A written by Tj in S1, then Ti also reads value of A written
by Tj in S2.
– If Ti writes final value of A in S1, then Ti also writes final value of

00
-

T.EE#iX2bE.IeKiYLI-.EiE.Yp--N- I , I ¥i

Tak.ie#iXLI-&K.TL-FtaK.FxTiE2.TsEE cuaiej

Ts ¥¥si ✗Lii¥É¥ , Fit
T.EE ✗Li¥-¥E .EE?EiitkEE-t-xfF-iE-&Ei-u EITEL

¥±. . the -13 4B¥:L .

T.tk . 8¥ ✗Li¥.EE
,
Y LIEGE

Tz¥k¥i ✗2¥kik ,
72¥44 ,

FAT,EL .
Ta

'

¥-9 Cuai-4

Ts Éa . Etf ✗III.EE
Tak.ie#iXLI-&K.TL-FtaK.FyTiE2.TsIE cuaiej

I Éa . 8¥ ✗Li¥.EE
,
Y LIEGE

FEEL"E¥ , 72¥ J TES EEE action ,
j-Egz-ELEf.FI#-t-hiFtECT. in this case)

£557Bn
.

Zai :3 :

☒4-Fatt EI , ¥¥E%Y+E 1¥#
-T serial order

* side : view serializable schedule / must
have blind write

,
no head before white

and not conflict serializable

Allodule 3 :

cost AAodel :

⇐eat"E¥¥¥¥£¥f&*i:& .it#-*3g.EE.2i-%EE ,
☒ + *HE

iÉÉ

PEEK: ÉÉÉ¥ Join Rcm eases)
.

Scn pages,

Block Nested zoo, join {
%" "tested ↳03 Join (13--3)

Block Nested Loop Join CB>3)
-2B¥ index : Hash Join

Sort Merge
. Join

F- index : Index Nested join {
Clustered Index Join

Uncluttered Index Join

Block Nested Loop Join :

EEi¥±: R: M horses , S : n gases , m >
n
, B buffet pages

* ¥¥¥ , ?¥•E¥_
m + 1-¥-2T * n

* cost =

T→ ¥+3 -4¥ output , -94¥ n.FI/I--I-9#&I--kEmtzf

Sort Merge Join :

EEi¥±: R: m doges , S : n gases , m >
n
, B buffet pages

cost :
sort + merge

= m.2.ci#BrsortmKit=M
" 'M

} sone

t n . 2 (☒ B sone n Gig # lasses,

+ Mtn } merge

Hash Join :

B buffet pages

EEi¥±: R: M 2ages , S : n gases , m >
n
,

¥¥;¥¥¥¥ :

partition phase :

IÉM ,
¥ : ¥8m partition.

B- IT slattions , Éf Thereinm Ff

-

⑧ IF>Him# inn, T Tage

¥8 n partition.
B- IT oiattions ,E-f-Tkortionn-7-v-I.ir

.
¥ :

-

n 4- page⑧⇒MINE input
É☒ 4¥ Bfartionm 2 B-2 11 olartionn 2 B-21

*:#F. ¥g- part.in
- HÉ

Join phase :

T¥m : . +£8 min (olartionm , Kition n) load #¥

¥_¥+4 Elf ¥+45k hash ¥ partition
→ sti %Hi°nm_ g- portions

B-②→
, for inti - l

for outTue

i-Edkttionnc-tt-I-tphasex-tI.GG#3TjiE-on:

☒ hacoiartionn) ,
£-6
'

match
,
¥+4

cost : # Bertin phases • cmtn) • 2 + (Mtn
w un

t join phases
* lw

Index Nested Loop Join (on
the fly)

EEE±: R: M 2ages , S : n zages , m >
n
, B buffet pages

47=2%-17-8--1 E¥ E. select * ,
join S

Cost = Coirobe - 1) + C# of index Rages in R to ready

+ c-1-1 of data pages ink to ready

+ C# of data pages in S)

probe - l : xfF Bt tree index #a hash index 3=27-1+7

For Bt tree : If Got height (X - level , X-D ,
Hitt probe ¥ ✗ - level Afx

-5¥ -assume probe# 3

For Hash index : §EF% ,
-¥A¥_He toot Ed bucket , -57=2 assume ¥1.2

of index pages to read ink :

RE # Total Number of leaf pages

RF : f-EEHIFE-queryqh.tt#&CIselectGr9- 1¥.)

of data pages to read in R :

clustered : RF * Total Number Of data snags in
*

uncluttered : RF # (#d!÷µg-es) * # data rages

→
qualifying tuples in ☒

of data Eases to read is S :

[④ * Total Number of tuples inRI

RF * Total Number of tuples in R & C probe t 1)
& I

-8-6--4=1 index
H index # it data

IÉE
. .

H-IA-s-tI-%9E.pt?E . ¥E¥ ① ☒ index ¥-5k# ¥ ¥E¥② ☒

index -1¥ -LE S . ¥¥K¥ Eli]¥
index

, ¥2T EEE ☒
table scan .

Calculate # of page at each level of Bt tree

1. Ha'÷¥th - T page Ftt'¥X¥. IT Data Entries → # Destroy
→ # leaf

2 , Ii 7¥49 leaf pages

3. F(# leaf# DESI ,g+☒ = level -14818258-Eat nodes)

: ←
level - lEsµ

, , ,
/ = level -248185¥ -43,4k nodes,

¥¥Y *, • → root node

Module 2

B+ Tree

* Minimum 50% occupancy : ¥TTf¥¥ . .
entry Bf_££⇒d£m±2d ,

d¥n order

¥±¥IIÉ¥#ÉT -5k¥ - 4-

* Insert (data, L)

1. Find correct Leaf L

2 . Bet data entry onto 2

if I has enough space , put !

else :

split CL)

[split a-f. ¥49 IB-ts-IICTIEI.BA
middle , Elf leaf 4%224)

split CLJ :

if his leaf page :

1. find middle

2. split L into Li and L2 delimit :-[ed by
the middle ,

Li := LI : middle] , ↳=L [
middle:]

3. copy up the middle

↳ insert (middle , parent

else if 2 is internal page :

1. find middle

2. split L into Li and L2 delimit :-[ed by
the middle ,

Li := LI : middle] , ↳=L [
middle-11 :]

3. move up the middle

↳ insert (middle , parent

else if his root Rage ;

1. find middle

2. split L into Li and L2 delimit :-[ed by
the middle ,

Li := LI : middle] , ↳=L [
middle-11 :]

3. New root with ene key : middle

4. height -4 ;

else :

"

Redistribution

1. between leaf nodes

t f☒¥yII
☒III"☒E4I

ftp.Et-if#JtxS-&--2o.hIifD-JEa2I . minimum occupancy (2) ZÉk2ÉI¥#B-

1. fE&±;¥¥;¥⇒¥ redistribute Hi¥¥i ctedisburitej.CZ#asE-)

2. 1111-11%-204

f☒¥II
☒III"☒⇒I☐

3- Move 24$ to F

II→☒E4I
4. £8 27$ copy up ,

replace 24

of'¥¥⇒
☒III ☐

2. between non leaf node yyy.im#ggEgbou-hn.zo--atEaEE-7?-f&--T 20 ⑦Fit !

8 8

Biffy If redistribute Got¥-09M # T node

1. f-⑦ 17 ,
20 ¥§EeAEf IIHF node

•

☒¥¥I☒III

2. Replace 22 with 17

i.IE#I☒III

Merge

1. between leaf node

☒⇒¥¥¥É÷=☐→☒¥¥
¥j¥HI 24

1. &É¥¥ÉÉ redistribute
.

cF¥É

2- £É£±¥ÉE merge C¥É

↳ a . # ¥+24

2. Merge ☒III ¥ ☒III

3. f-827¥ 'T 2-44 IFIPH.tt#CEiF--!.I.*&'ET.non1eafaageLt-KJ
minimum occupancy GATE

f☒¥II\
,

1M¥ ☒¥ñ☒

2. between non leaf node
.

o o BA •

•*aq•-IwhfT§

=g2¥¥
-

merge oak # T node

1. FE 17 lull down

2. merge

0

¥-164k , EH} ¥57.-1=14-1941111-85*24
Steffi

- Insert：
 - apply hash function to data entry : $hash(data)$
 - use $hash(data)$去找到对应的bucket
 - 如果bucket没满：放⼊data
 - 如果bucket满了：
 - 在这个bucket后⾯allocate⼀个新的overflow page
 - 把data放在page上
 - 把这个page加⼊这个bucket的overflow chain上

- Delete：
 - apply hash function to data entry : $hash(data)$
 - use $hash(data)$去找到对应的bucket
 - 如果data不是在overflow chain中的⼀个overflow page上或者在overflow chain中的⼀个overflow
page但不是这个page的最后⼀个：直接删掉
 - 如果data在overflow chain中的⼀个overflow page但是这个page的最后⼀个：
 - data删掉
 - 把page从这个bucket的overflow chain中移除，放⼊free page

Hashing

Static Hashing

Extendible Hashing
Global depth ¥2 local death #475¥?

7. Eoff - T split :

Global depth -1=1

c 5¥ -3g. - tÉa'¥tÉ

local depth of that bucket

+ t

2: 00 10 1 : 0001

1
"

24 6 4 : of o o
3 : 0011

°

G : of 10 5--010 •

• "

I 35
12 :

All 00

11100

i¥→ •
10100

☒→ ¥167 100
"

III 000

Add 8 , 16

3

000 → (8 , 16) local :3

001

010
→ (1) 3,5) I -0cal :D

too →
(4) 12) local :3

a. 6) loool : 2

Linear Hashing

✓

External Merge Sore

fgzj.it Eq - taking External
Morse Son_É±%F Run B- '⇒¥18k page size

sort ✗ T Pages ,
Ff BT butter pages

,ÉfTs*¥xI2age
Sore :

If 's¥ I I = 5. Sks

merger : Edie 1%9*-7 = 52 Sks - -
-

¥fts*ff✗ ,
• CB-119
Reese

until outset only I sits

-Tb} # -4 SR

cylindrification

phase I sort : average transfer time

¥ ±, -4 Be t.tl?Z.&ah.na-tiF

Transfer time : # pages (number of pages in memory) • XM#ages
+ rotational delay : 0

+ Long Seek : 10ms

+ Shore seek : f# cylinders (number of cyls in memory)
- 1) • short seek time

file size

F⇒'¥¥, B2 fill 4A 2282 : # till = taeimainmemoy

ftp.#-tI-E0 : 2. 132 time . # fill

Tv
R R W

phase 2 :

¥, 1=1 cylinder needed for file average transfer time

A-KÉ-tI, time for 1 cylinder

Transfer time : # pages (number of pages in cylinder . XM#ages
+ rotational delay : 0

+ Average seek : 10ms (data - dearden-13 , I'Lf±FEHGBhf¥¥¥£¥=¥
F.EKA SR, -1*21-71%9 AFtÉ¥⇒§ assume worst

E. ☐fit '

2. # cylinder • time /cylinder
←
Raw

sore phase time for 1 B2 : IT long seek ,
cyl - l 'T SS

* Cylindrificatioy

¥ phase 24, 8K¥ input buffer ¥ output buffer

x-f-E.ffy-afiF-GM-Zz.INT

In.☒f : 2 . # cylinder • time /cylinder
I
☒ • W

R : # cylinder . time /cyl

W : # cylinder . time /cyl

iÉ-¥
.

,
j¥Etp # cylinder out put buffer E. '-Eft writing that i -7

- :2¥j¥r_ merge 47325s ,
4- disk I seek ¥jtÉ¥± Cheng Seely -#¥5

- 1 cyl , G-5TH, #¥- outfit buffer It lcyl , 17-448--4-8=11%-9 cyl -4ft-0g
ZIG - iz LS

,

4→_¥ outfit butter I# Ey 2cg / agita , EEE

Ey. # a cyl 4k£
- =1 ↳

.
#"¥-55 ! → w=¥,{¥Y%→w#

• time / cyl

ca) ¥ Sore phase & , ¥471] ÷n¥+fE
data Ete- £¥n , £4k

¥5s - ¥ , Ii sore Phase -¥a⇒&Hf white ¥2
Read A-f- , t#☒

:-& ¥⇒E¥iÉ¥←
a) - T BP fill FIG 9- Ls ¥0 SS :

SS : seek in between 2 adjacent cyls

i. - T BP ¥559T cyls , -173114 Ss Ii;¥ #Gls -1

LS : I LS CIE adjacent cyls hit
seek)

(2) 5%-535 BZ fills :

Ff XT page -81 sore , -9137 ¥¥ YT page ,

Yy
'-1133 fill

E¥¥⇐☒*A-E☒¥+kÉ Bp fill at 4£ , ¥
Bt # ?

Ff 24 cyls , I Eff 21.5
'-1132 fills , ¥7:]

7. ¥3 - '-28k¥ JAB} fill ¥0.5 '-1B$ fill .

= :3.IE#tF-EgCyl-7F=-Iass .

Baht'iEd§

2¥30 way merge

• : 0.5 cyls per input buffer

i. Total : 30 . O -J : 1J for input

J cyls for output

2-1-8 Morse#ik . Fit;]'¥FJ¥Ee¥÷n

E- ¥EaÉE 'T file

i. Filesize
input

buffetsize

= %÷Ñ =
1200

input butter

fill

a

1200 Is (¥-4
Foz write : input buffer 7%7

- J cyl , ss)

JT cyl for output

6¥ = 120
write

i. (5-1)

Eor eÉ4ss

d- 120 . (I t 4)

Seek time 1- Rotational Delay * Transfer time.

I

*¥¥y IS cyl EYE -1-5-91 : 1ms + 1ms for 500 cyls moved

Rotational Delay :

FEMME : TAJ 16,000 train =

= 266-67 811sec
d

16,0" •

gg .

-3.25ms

4*1 -8£

I

-17€

Note : +taster time for a page anything

1. calculate 1=1 sector needed for the page or anything

2. calculate the portion of one track that needed to store a page

↳ 1 page = n sectors

we need nmse.IT#ak = ✗ tracks
↳ a fraction , hopefully

3. Use ✗ to multiply the rotational delay ¥ one spin→ ✗ . Spin ✓

Note : ¥¥É KEI, : moving time from C1 to C2 is 1ms + 1ms pep n cylinders moved

At averae seek time : 1ms + -3 .lt#1movedntrack-j
µ

Maximum seek time

Note : Average rotational latency : zsziy~QI-IZ-ta-k-REHGa-fi.fi

\

