Biological Neurons

e The human brain has about 1011 very tiny neurons. Each neuron is connected to about 104
other neurons.

e Each neuron only connects directly to a very small portion of other neurons <=> as if you
could only communicate directly with 3 other people in Canada.

o #L2IT(Neuron)ERMF AR E 2MHERAFZIRZHEINTE

e The cerebral cortex consists of many layers of neurons with one layer feeding into the next.
Layer boundaries are not rigid and some connections jump across layers. EFAME EHEETFZ
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o BMHATHMAIEEE (cell membrane) FREIEEMNMAER (cytoplasm) HAETEF (ions) , #
Z ARG F—Fsalt solutiondr, Xsalt solutionffi = —extracellular fluid (4BRESMRIK) |
EXLpEIMNOTRIAT, TEGETIEWEF (positively charged sodium ions) f1faSEF
(negatively charged chloride ions) ., RPN EFFESETIEREF (positively
charged potassium ions) HfaEH 2+ (large negatively charged organic molecules) (Lt
MEBR)
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o WRMNYIRITIEEIHlipids CHAE) AMKMAEMREE, tiluiEIchannel proteins (IBEE
H: BEEOE—RBEUMEEREND FENERR) that extend through the membrane.
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o Thus a spike in potential (the action potential) moves gradually down the axon. Note that
after operating, the ion pumps need a short period to recover before they can
operate again. This prevents the spike in potential from moving backwards on the
axon. Also note that the potential at the axon base falls slightly when the spike is
being generated. If the neuron returns to the threshold value, another spike of
activity will start on the axon.
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H[-; [ potential gradually climbs toward

threshold if input is maintained

ion channels operate causing spike in potential l

-I threshold met at axon base I

cumulative effect of inputs (activation) is gradually changing
potential at axon base (through slow potential)

cumulative effect of inputs (activation) is not influencing potential
at axon base
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o The maximum firing rate is about 200 per second.
%"%E@%E‘i%iij‘pﬁﬁﬂlipids (GHBE) BRBVMmAEEE, MAlnIuEidchannel proteins (BEER: &
EEQ R EHMBEREND FENEAMR) that extend through the membrane.
SANTFEMIENRBERNEETRR, EXENESHE—HN, Ik i E
B, X'—"HESSWT—HES . XEEEHTFRRSREEMpotential (amplified) ‘JZILFA
[#EEBRpotential (de-amplified) , EEB A EEMnegated, XLEERE FEMA—HEH

synapses,

XN — RS B WA — N RIRIX—IN %is modelled by assigning each synapse a number
(called a weight, or synaptic strength) and multiplying it by the signal to determine the
resulting local potential at the post-synaptic neuron.

Excitatory neurotransmitters have excitatory effects on the neuron. This means they increase
the likelihood that the neuron will fire an action potential.

Inhibitory neurotransmitters have inhibitory effects on the neuron. This means they decrease
the likelihood that the neuron will fire an action.

There are some "veto" neurons that have the overwhelming power of neutralizing the effect of
a large number of excitatory inputs to a neuron.

Some indirect self-excitation also occurs when one node's activation excites its neighbour,
which excites the first node again. i@ —EMEZ T RBUEMLIINHE T, XERITAHITEIR
RIXMESHERX T HETTHRBEM

Summary

Incoming signals create potentials at the synapse sites of a neuron.

Each of these potentials influences (through slow potential) the potential at the base of the
axon. The sum of all these influences is called the activation.

When activation exceeds some threshold, action potentials are generated, and propagate
down the axon.

The same signal transmitted to all of recipient neurons, can cause different effects on the
recipient neurons depending on type and ions at the synapses and the neurotransmitters.



Learning in Artificial Networks and Linear Separability

e Classification - Grouping and recognizing the label attached to the group

o Labelis known
o |dentify letters as 'A' and 'B' which denote class labels
e Clustering - Grouping based on distinctive and common features

o Labelis not known
o Identify both as letters but different based on shape, name of the letter is not known,
define central properties.

o FEXMTANBERRLNKS, F— EEEDKEH, thILRAFLFISHAIRIR, ME—
MM ZREEE, MERFIFLEAENAESTT, label 2R AEN

Threshold Logic Units(TLUs)

® TLUs CANNOT realize functions that are NOTlinearly separable
e TLUB=&=ZEthreshold neuron, R IEZE Z#HEIRBA (0, 1)

e AND Gate
Input 1 Input 2 Output
0 0 0
0 1 0
1 0 0
1 1 1

o FBMEERKM—threshold neurongyiE, BARMNFBERENMEEERIAN, NTIEH
x1=1 =1 ERM T ERERZ 18IER TABECE, MAEERTMIRERT-226, BAMRIR
EFE0-12Z[BMNE, RE|EE— xRS, MRIREE2MUEIE, BAETENE

o RISWRHY, MRBEGKRTIIE, BTRIELIRE (X1, xp) KRR, INBREFE—FD
B AIEXE QR T



o AND Gate > 2 inputs

‘What would be 6 =? if the AND gate
should fire when any two inputs are 1?

< 0=2
! w;=1
AND gate that fires
when x;x,x;= 111
X, w,=1
© 0=25 —_—
w;= 1 What do you need to change if it should
X3 fire only for 110?
wy=-1, =15 b

o W EEMR, NFARMNEXR, #aIIBITIERENEMNRFEENARIKSTHKB iR
® OR Gate

Input 1 Input 2 Output

0 0 0

0 1 1

1 0 1

1 1 1
6  OR |
; %1 w; =1 N S
i \. i 1. -
i 0=0.5 XX E o" g
! | 1
w1 OR
X, §

Input space

o M EEAI—H, BEANorgateERZE, RBEBE—input213BAMEIneuronFi o] ABEUE, B
MAENEHZ1RER T, EFEIRERO-1ZHE—RIIRE
e Linearly Separable: A function f:{0, 1}"—{0, 1} is linearly separable if the space of input vectors
yielding 1 can be separated from those yielding 0 by a linear surface having (hyperplane) n-
Tdimensions. ME W F—1,{0, 13" {0, THXHEFRIRECK, KD BRI EERET 189
FHRMBRET OB EFFE—TE T - 1EENTEIEMNDFF

® XOR Gate



Input 1 Input 2 Output

0 0 0
0 1 1
1 0 1
1 1 0

o EftREREHEZXTHEFHN:

XOR

o WFXLLKR, HAFE—FEIEMINDF, MUMEMNRLUARRIS, FAMATLU logictlRAER
AR, FRAREAZ MMayer, BIFRTinput layerfloutput layerz 9, EEH—third
layer, S0EIFTRN:

XOR

-2.0

1.0/ 1.0 1.0 1.0
?XI Xz?

o {&iX#="layerfilogic gatefNiERBEEN R T2 EPIZIEH
o —ULEHEE:

o In 1969, Marvin Minskyand Seymour Papert, two “PSS” researchers at MIT studied the
ANNSs and revealed that a two-layered (input and output) network cannot handle all logical
relations -specifically the XOR.

==}
= O = RS
S = = O

= |timplies that ANNslacked the power of a Turing machine.
o Federal funding for ANNs immediately stopped

o David Rumelhartand Jim McClelland developed Parallel Distributed Processing (PDP).



e Linear Separability as Functional Mapping:
o B, LB EREmoutput function:
if > wiri >0 f(zy,x0,...,2,) =1
ifYor wizg <6 f(zy,z2,...,2,) =0
WIZIRXTREZR” — 0,1, fttAoutput B0

o MR—T, RRKRE z1,x2, ALK, WRwiz1 + wozy > OME, BARKNERS
21, RZR0, FAINAIMEY, Hwiz) + wozy = ORIXEL, FEXMEX R EAIH SED
LHFR— T separate line, EZAIAand gatekz M+
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o FE&E—1TMEpptiaHNLNRIAT
o B Zweightf)EMOMNE, FTUEE _HFELNES
o QIR Abias
e FffATraining a network means finding the best fitting values of 6 and the weights to categorize
a given set of values

o "HTEMUB—FELDE, ZHTFEAIUE—TZHNTFESE], FTLA: An n-dimensional
input space can be divided by an (n - 1) -dimensional plane or hyperplane



* The net input signal is the sum of all inputs:
net, (1) =Y w,, (1)x,(1)
j=l1

This can be viewed as computing the of
the w; and x: https://en.wikipedia.org/wiki/Dot_product

net, (1) =||w, ()| || x(®) || -cos
where a is the between the two vectors and
||la]| = sqrt(a.a)
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A BAfEAmultiple artificial neurons in multiple layeers to form networks with increased
capabilities

E—"NayerBEA B Z 1 neuron, RIFEE—TZHEUE, AT Tneuronf A UERE—FD
Bz

—Terminology:

o f:R*— (0, 1)2: means that the network takes 3-dimensional real values as input
and generates two dimensional binary output values.

output layer
hidden layer
I I ] mput layer

Arrows indicate the direction of data flow.

The input layerjust contains the input vector anddoes not perform any computations other than
distributing inputs to the next layers (used optionally).

The intermediate layers, termed hidden layers, receives input from the input layer or previous
hidden layers and sends output to the final output layer.

After applying their activation function, the neurons in the final output layer generate the output
vector.



Adaline

Mathematical Point of View:

ftbAYEAR: minimize the squared distances to these different points

o JWFB/NRKIR, "Error"iBEX X T REIXFENIER, (EMNREN TR, BBAfhierrorif
2y — (m*zy +b)XMIE, FRAtbAOSquared Errorifi2 (y1 — (m * 21 + b))%, HEANEX
L 8 MYSquared Error&fBY T RANE, BAIRBEID ", SquaredError; , ARMESKXEINHE
—MNE LHAMFb{ERminimizeiXSquared Errorfisumii{E

o ZI{/D+EHRBEIZE, SEjine XA ABRIFRAREOX TMEF
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o YEABRESNMESANRF, HE2EENXFINE, FMNNEMRRESSESHMIINTIE, BT
HEARARR, MAIMRE—TEMEENAR, EEETH& TAXTMRFZE, MAIN#HT
optimize (¥ EIBEEXPFRIAXMinimizeAImHb)

e Error SurfacefIiftx, 7 LEMNSE,, NXTMRF2E, EXAIMK—K. BR—=Z4FH, H
thm-axisFlb-axistNEFR, SEun.. tLBE—"Taxis, EXTXFH, BARBHEMETLE, ATUE
EIRERISERNE, MREMMbABERFIEERR KRS, FBLoutputlIISERER AAM—1FE, X
#gerror surface, HEXFHRMRIGMBIEX TN FAIMMA ZEMMHME— T FERMerror surface,

* PBAXTIHERAZHBIRZHEIMAbAEERHREIX T FENRIVE, TERXTITHAESEKRLIE
HYZEiC:



1. FBR—REH, XT—REH, £2RIU—RSRE(first derivative, B} first differentiation);
2. ©—RSEREN0, BEFMX, RIEES A (stationary point);

3. BEW—RSREKRS, KERNEDRSRE

BRI RS SRX, RAZIZTRSREF,

MRATE, NAESRARIMER;

MRNTFE, NAHIEFSRAMKER;

MREFETE, NANBSABRIFRAER, BIFIMER, RABR,

185 = POl = Point of Inflexion = B{& M FMUHEERT S,

4, BESRNETAAZIRRE, MEETHRRSRIVE,

X R Zone variablefy, A4 ZHAtwo variable, EZEmultiple variablef9At{&:

Maxima and Minima of Functions of Two Variables
The problem of determining the maximum or minimum of function is encountered in geometry, mechanics, physics, and other fields, and was one of the motivating factors in the development of the calculus in

the seventeenth century.

Let us recall the procedure for the case of a function of one variable y=f(x). First, we determine points x_c where f'(x)=0. These points are called critical points. At critical points the tangent line is horizontal.
This is shown in the figure below.

Hv.ma !

The second derivative test is employed to determine if a critical point is a relative maximum or a relative minimum. If '(x_c)>0, then x_c is a relative minimum. If f"(x_c)<0, then x_c is a maximum. If
f'(x_c)=0, then the test gives no information.

The notions of critical points and the second derivative test carry over to functions of two variables. Let z=f(x,y). Critical points are points in the xy-plane where the tangent plane is horizontal.
Rv.ma ]

Since the normal vector of the tangent plane at (x,y) is given by
folz, i+ fulz, )i — k
The tangent plane is horizontal if its normal vector points in the z direction. Hence, critical points are solutions of the equations:
folz,y) =0 and  fy(z,y) =0
because horizontal planes have normal vector parallel to z-axis. The two equations above must be solved simultaneously.
Example

Let us find the critical points of
= s = (1 451
The partial derivatives are
fo(z,y) = (-2 + Dexp (—%23 +z —y’)
folz,y) = —2yexp (— %z’ +z— y’)

f_x=0 if 1-xA2=0 or the exponential term is 0. f_y=0 if -2y=0 or the exponential term is 0. The exponential term is not 0 except in the degenerate case. Hence we require 1-xA2=0 and -2y=0, implying x=1 or
x=-1 and y=0. There are two critical points (-1,0) and (1,0).

The Second Derivative Test for Functions of Two Variables
How can we determine if the critical points found above are relative maxima or minima? We apply a second derivative test for functions of two variables.
Let (x_c,y_c) be a critical point and define

D(@e, ye) = fra(@e, Yo fu(3esye) — Ufryle,ye)-

‘We have the following cases:



o If D>0 and f_xx(x_c,y_c)<0, then f(x,y) has a relative maximum at (x_c,y_c).
o If D>0 and f_xx(x_c,y_c)>0, then f(x,y) has a relative minimum at (x_c,y_c).
« If D<0, then f(x,y) has a saddle point at (x_c,y_c).
« If D=0, the second derivative test is inconclusive.
An example of a saddle point is shown in the example below.
Example: Continued
For the example above, we have
Fele,) = (22 (1= 2 Peap (~ g2 247,
fula) = -2+ dyeap(~ 32 +2-17),
foy(®,9) = ~29(1— P)ezp (* %zx - y’) )
For x=1 and y=0, we have D(1,0)=4exp(4/3)>0 with f_xx(1,0)=-2exp(2/3)<0. Hence, (1,0) is a relative maximum. For x=-1 and y=0, we have D(-1,0)=-4exp(-4/3)<0. Hence, (-1,0) is a saddle point.

The figure below plots the surface z=f(x,y).

“\‘:“‘

Notice the relative maximum at (x=1,y=0). (x=-1,y=0) is a relative maximum if one travels in the y direction and a relative minimum if one travels in the x-direction. Near (-1,0) the surface looks like a saddle,
hence the name.

Maxima and Minima in a Bounded Region
Suppose that our goal is to find the global maximum and minimum of our model function above in the square -2<=x<=2 and -2<=y<=2? There are three types of points that can potentially be global maxima or
minima:

1. Relative extrema in the interior of the square.
2. Relative extrema on the boundary of the square.
3. Corner Points.

‘We have already done step 1. There are extrema at (1,0) and (-1,0). The boundary of square consists of 4 parts. Side 1 is y=-2 and -2<=x<=2. On this side, we have
2= fla, ) =ezp(~32 + 2- (-07) =a(@)

The original function of 2 variables is now a function of x only. We set g'(x)=0 to determine relative extrema on Side 1. It can be shown that x=1 and x=-1 are the relative extrema. Since y=-2, the relative
extrema on Side 1 are at (1,-2) and (-1,-2).

On Side 2 (x=-2 and -2<=y<=2)
1
2= f(-2,y) =ezp (—5(—2)J -2 —y’) =h(y)-
‘We set h'(y)=0 to determine the relative extrema. It can be shown that y=0 is the only critical point, corresponding to (-2,0).

‘We play the same game to determine the relative extrema on the other 2 sides. It can be shown that they are (2,0), (1,2), and (-1,2).

Finally, we must include the 4 corners (-2,-2), (-2,2), (2,-2), and (2,2). In summary, the candidates for global maximum and minimum are (-1,0), (1,0), (1,-2), (-1,-2), (-2,0), (2,0), (1,2), (-1,2), (-2,-2), (-2,2),
(2,-2), and (2,2). We evaluate f(x,y) at each of these points to determine the global max and min in the square. The global maximum occurs (-2,0) and (1,0). This can be seen in the figure above. The global
minimum occurs at 4 points: (-1,2), (-1,-2), (2,2), and (2,-2).

Example: Maxima and Minima in a Disk

Another example of a bounded region is the disk of radius 2 centered at the origin. We proceed as in the previous example, determining in the 3 classes above. (1,0) and (-1,0) lie in the interior of the disk.

FRARIAEER], ATRE—TFENRE, FEBIREXTFERNSE (D3N E#Rvariable)
SFed

Partial Derivative is just like taking regular derivative, just assume everything but the variable
you are doing the partial derivative is constant



e 7Effpartial derivativefIEHEX RIN T —MRBEBIISR: R TEIB ™Mz +b=g, LHER: &
BARAGEEE, BE—DR(T,7), ma? + bz = sylBXMFma + bR 2 BthamS—
M (2, YY), BTERA S ZEEL FHELRBMEy = mz + b7

T’z

o _FEIX/MIFSLFR E Roptimize—Minear regressionAyflF
Adaline
o M IEMMAERELRNE, EALEENKREEH, erroriilBRHNENMe =d — y

e YfFp-idata point, X~mean squared errorzg:

p

1
MSE = =% (d—y)?
5 d (d—y)

o AXEITICHRIRE:

y= f(net) =a= Z%wi
i—1

R i72—linear output function
o MEMEMMPEB—H, AT m/IMterror, MIERZXTHNEH, HEIFESHweightfbias unit

Some history



An Adaptive Linear Element tries to minimize the total amount of error instead of aiming to
reduce the number of misclassifications.

The Adaline, proposed by Widrow(1959,1960), modifies weight in such a way to diminish the
mean square error (MSE) at every data point.

The training examples are of form (x, d) whered € R

Output y € R,the network outputs the activation a.Uses linear output function. y=a

Learning Using Gradient Descent

Adaline uses gradient descent(t£E &%)

Gradient(t#&): EMRPEH, MNSTRBNSHRIFESE, ERFNITSHRNRESHBUARELN
EREHE, MEHE. tEMRBI(y), 25Xy RIESFE, KENEEDEHMI(0f/0x, of/0y)T, i
Frgrad fx,y)&&E VI(x,y). XFERX0,y0)RIE A% E RERZ(0/0x0, 0f/0y0)T.84E Vf(x0,y0),
REINSHNRERE, FE0f/0x, 0f/dy, 0f/dz)TLALLZEHE, If fiw1, ..., wn) is a differentiable,
scalar-valued output functionofseveral variables, its gradientis the vector whose components are
the npartial derivatives of f.

BENEX:

af_(af of af)

W - an’ aWZ,.”l, Aw..

A

Gradient 1s a vector V =

Gradient represents the slope of the
tangent of the graph function £{) and
points in the direction of the greatest rate
of increase of the value of A).

f(x)=2x2-8x+1

o fAIEXM/LAEX Ei#, MEBRAEABMNZROMT, BiEKiR, STRBY)ER
(x0,y0), JAEEHEMEN T ERZ(f/0x0, of/oy0)THI A MEf(xy)IBIN&RAM S . HER, &
ERERENFE, BENEZHIRENRAE. RIFKR, SEBEQERRNGE, BME
-(0f/9x0, of/0y0)TEY 5[], HEBI&IR, MEENS ZHEIRHRR/IVE.

o LEMFANVE—EXRILELNELUE, BFHENFIEEATIL, TREREE-SE—F, UME
ASER—MUENIME, KEBARUENBE, BEBENNGRE, W2 SnRkEENUE
ATE—Y, REREKBINUERE, AX—SREMELGEREIERS TILNUEE—
T, RFE—FHHNETE, —EEIREHNEXRE TILH, SAXFETE, BRI EE
ERLE, MR TE - TEEILERSE. M EENRETMEL, BETEA—E/EISHE
ERNRME, BAUER—TRERME. SR, MRBKRHBZ LR, BETEESEINRE

M—ETERRME.

e Grandient Descent

o HIXMRIFIERE, B5Squared ErroriX o F2iR#Edesired valuefactual outputfSEIAY,
actual outputZtR#Eoutput functionFZIAY, Moutput function EEBIAERIE R net input,
RERIEY ., 2w BEM, EERMEsquared erroriX PN FHEHT—"Terror surface, &
ERE—Tm&Mweight, ¥ Fsquare valueiAZ| &K =R

o Gradient descent is a first-order optimization algorithm. To find a local minimum of a
function using gradient descent, one takes steps proportional to the negativeof the
gradient at the current point.

e Gradient Descent VS B&#ETF0



o MFBEHEFTORR, BEAREEEIEEK, HEXFZMvariablefSfunctiontbaREZD
critical value, BZMEEEERRK, HEAESBNREKAHSHEFTO

o PRLASEFRE, FGradient Descent3RIE12EIAKMXMERHEANIFAZ: WRBRIHweightS
NERBEEMNEREBOZMIE, BBAXPslopestbiRA, RIS FiXPweightHit,
BENBESEAR, B2, HweightlE@EBam (FEiZikerror surfacefIRIER) AIRHME,
M= I2IENEE, HENTF—LEESERETOITEARAL/FIFZMcritical valuelIEREEIE TR
33

o FIMHESITEpptEEHZINRA, HRIFAEMBEEHEMNEABARNENE, MEAdalineRHE, NE&E
FIAEAAMEREE, MEEEENRESHEETMSERSEIN

* Finding the absolute minimum of a one-
dimensional error function f(x):

flw)
\ slope: f'(w,)

W, Wi, = W, - nf'(wy) X

Repeat this iteratively until for some x, '(x,) is
sufficiently close to 0.

* We have to apply the chain rule to solve the
derivative because

E=f(e) given I = ¢?

e=Ay) given e = (d - y)
y=f(a) function of activation
a=f(w) given a = yxw

when we are computing partial derivative w.r.t. weight
OE OE Oe 0y Oa

ow, de 0y da dwy



* So, considering n dimensional input vector and
E =e?=(d—a)? and a=XX;W;, w, should be
changed in the direction of —ve gradient.

* Applying the chain rule to solve the derivative,

JE OE J0E X
—_—— T — | — — w
ow (awl’ ""awn) \W:A
X3
OF 0E da BT esds
—— = x E=Ve

aWk 6a'6Wk
oW x; + -+ wpx; +--+w,x
=C(d—a).(—1). (11 k*k nn)
aWk
=c(d —a).x ¢ = a small +ve constant learning rate 1

® Chain Rule:

D{f(g(z))} = F'(9()) g(=).

XFFAdalinesgiit, BENMZIJNIRZHBEELRSZH
JEI ifa>0
7 dfa<o

(wo + w2y + ... +wyxy,) il]— output
— 1 —

[ ]
i
o

A
;

@5

Compare with
Adjust weights desired output
See example 2.6 in the book. You will
see that the solution applies correction
orlly y;hzn a dati p}?mt lisllélcorre(éltly generate custom
classifie (eqor threshold) to reduce output after training
the computation. 1

o WMRBARI—"outputhtdi®, BIAERZneuron with multiple weights, X5 EE
Assignmentsitb 5 B E|

An output function
can be used to

Validation of the ANN Model

e True Positive(B1E, TP): IFIESETINAEZEEN

e True Negative(BEfh, TN): J§5ZEFN fazks

e False Positive(fR1IE, FP): M§HasEFuMly IE L E0RIR (Type | error)(B Z /DX 7R FA)
e False Negative(fiRfi, FN): JEIEEFNA A8 E—IKIR (Type Il error)



1. /&M= (Accuracy )
R (accuracy)itEATA ¢

TP+TN

ACCE TP TN FP+ N

T ERERERNRERATNER , MBRESZER , MERO WIS ALPRURIERISEAL , BEkRR , [EREES | DKR0T.
ERESL R — MRIFRENMASTHN S | EREMMRERESHAREAR—EEMNGT. IR MEKERRATN , RIgF(1E—
HRHEERBES EKMBY |, KBIREIWA : 0 1 AEEME. 1: BEME. —IRNBENS KRS, e NUKBIEREERIL
2790 , BREPACHATREIAZIO%AERER , (BEEAMESRIGT , XMDRBELRRE | XNMDKTRARKREARN. FHAI9%HIE
NS XA RERNEERN | RAXBHESH A , RKRIINEIEAL | ReED FKBIURATLUAZIR S ERFNZM TR
IXERIARAE. BENMIFRET, EEREARNHEBERT | ERRX NSRS RARIHRE, CNEERN S2H , REA0E
BERIH , —RRBTHZ/L, (R Mace, BIESERFRNARSE (FRE ) accthB 99% LAE | iRBRBY. Bt , BRAFEERFRFKIT
M EFERRITITABR F2EA.

2. $ER= ( Error rate )

HRRRN SERERIER | RO KSR EDHILLE] , error rate = (FP+FN)/(TP+TN+FP+FN) , [E—NSLESER , D35 EEERFSE
4, Afllaccuracy =1 - error rate,

3. REE (sensitive )

sensitive = TP/P , RixHIZFTAIEAIFIIIIHIELS] , BB T HEBIIEFIRNRGIEEN.
4, ¥5E ( sensitive )

specificity = TN/N , FRRAIRATB RGPS XIBLS , BB T 5K RBIRSRBIRES.
5. ¥, 5B (Precision )

FEHER (precision) ENX A
p= TP
TPTFP

TR B FSEFR S TEFIROEL .
6. BEE (recall)
BREXEBEENESR , EREESNEMESAIER , recall=TP/(TP+FN)=TP/P=sensitive , JLIERIBEZRS RBEE—HEN.

F-measure

* Also called harmonic mean of precision and
recall, the traditional F-measure or balanced F-
score:

2 * Precision * Recall

Precision + Recall



e Confusion matrix:

Predicted: Predicted:
n = 165 No Yes

Actual:
No 50 10

Actual: 5 100
Yes

o ME—TRIUXFEFIIRE

ROC Curve

Change in diagnostic ability of a binary classifier as its discrimination
threshold is varied.
TPR = Sensitivity or Recall FPR = (1- Specificity)

Validation ROC

1
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£ £
o &2 &2
Bl i R
172} B @
R 3 3
o & o4 &£ oa
2= S S
= =
28 oz oz
5=
5]
o o
s g © oz oa o5 o= o oz o0a o6 _os
O 3 False Positive Rate False Positive Rate
s
ug g ) Test ROC s All ROC
St
o =
2O o8 o8
O ~ 2 2
= Q S S
? o g 0.6 é 0.6
5 & £oa B,.
o E] E]
51 = =
m 0.2 0.2
o o

oz 0.4 0.6 o8
False Positive Rate

-]

o2 0.4 0.6 o8
False Positive Rate



Perception

® Some History:
© McCulloch and Pitts (1943) gave the first mathematical model of a single neuron.
» EXMERERE, EEflweightflZEFFSH
. BF—"layer, FiATREEIimplement XOR
o Hebb's learning rule (1949): For each input pattern presentation, increase connection
weight between nodes jiand j if both nodes are simultaneously ON or OFF.

= Activation of j always causes an activation of i where wy; is the weight associated with
connection from jto iand z; an x; dare inputs to / and j respectively.

= The strength of connections between neurons eventually comes to represent the
correlations between their outputs:

iji = C*Z; T
o Rosenblatt's "perceptrons” (1958): If the output is unsatisfactory, modify each weight by a

quantity that is likely to improve network performance, HBif#2H T supervised learningfy
=, BHlZEERNoutputZ22NEN, FEBEIX T EMoutputZEIEIFRIweightH 0

o Widrowand Hoff's learning rule (1960, 1962) was also based on gradient descent.

o Then back-propagation algorithms were proposed for training MULTI-LAYER networks.
Perceptron

e Perceptron REED M ~Class! ! !
e T7fPerceptron, learningBmfF A :

1. fEeapySimple Feedback Learning: tR#Edesired valueSR#IlT i FiidIthreshold/weight 2 &
HER, MMREIRTRIEEIAweightflthreshold

2. Error Correction Learning: Use an error measure to adapt the weight vector

o H FEXMMEINARNEAR LERHREMTAKAIA, ¥FSupervised Learning3ii, 1
—Hinputll—ANESBE I EMfunctions®FEI—output, BBAXToutput X &3 MN—"1
desired output, #FRdesired output~FTFIMERoutput, BBAWAMENNEREWIRE,
Simple Feedback Learning®lError Correction Learningtd X Bl 7E T EHIAER S :

= Simple Feedback Learning:
m  Zdesired output > output: Aw = c* x

" Wpew = Wold + Aw
» Zdesired output <output: A = (—1) % ¢ * z(FIAEXBIZETR T — A, A
MR E R FHERIELERER)

" Wpew = Wold + Aw
= Error Correction Learning:

» EXMAREERATFEF M output@ K FiE=2/)\Foutput:



" Aw=(d—y) *C* T, Wpew = Woig + A
s AXMARNER, 8RXEFIHENLAWEARNGE(d — y)NFERILEIRE
BRENN SR MILE
» (FRz; RIEA—AREREN: Use input value in calculation because if input
value is high, error will be high and vice versa

Features and Functionality(Two layer network):

o Two layer network

o Applies feedforward processing - all connections go to the next layer

o Initially w; are assigned random values which results in poor initial performance(high

error)

o To improve performance, network is trained to adjust the weight values — network learns
AR RMUXZEFEEweight, BZERRERY, FRLUEOMANinput BE—FHIFE
Yorg ziw; — 0 = 00X DRI DEIL, AL ! | ziw; — zowo = 0, FAILAILtE—EEA
BONE, EXMBERT, coREFT1, wo = —0

FRABTERI D B RIREZ: D 1 ziw; =0
NF—P_HH89FE, a neuron will represent a straight line:
Wy + w1 + Weky = 0

MEXFL, BRI FERR:

w1 wo
L9 = (—w—z)ibl — w—2
\ (O/ -WO/WZ)
Xy
(-wo/wy,0)

X, —> \

2R, evaluateE M aMoutputfldesired outputlIZFE/LEER, MTEHEEHTZ /AR
Perceptron Convergence Theorem: It can be guaranteed that the Perceptron training algorithm
will classify all the data correctly when they are linearly separable and cis sufficiently small.
Learning Rate: X TMERE T E8—RENBEMA/), MRAEVEXNT, BLrB8—REZTweightfF
HEERVAIEREE, EXMIBR T, AJeeRERKNINEIRINLG, NMRAEMEXKT, BARXKEMER
KRE

o common choiceisc=1
Terminating Condition

o —HRBWIEZIFENweighti#KiIAZELF

o RIZXEFIER—inearly not separablefydatafyil, AMESHN—TTRNIcopEHE, X
HFHIE, BEIRE—Tmaximum number of iteration




o Until accepatable error level is reached: Error = (misclassified data points / total data
points) <= threshold

o FEAMULE— T LE/IMERFMG—EHIT

The Pocket Algorithm

* The pocket algorithm is a useful modification of the
perceptron training algorithm
— Weight change mechanism is the same.

— Identifies the weight vector (wy,...,w,) with the longest
unchanged run (# of points correctly classified: # ) as the
best solution so far.

— Stores . In a "poc_ket" as well as
associated with it.

— Pocket contents are replaced with a new weight vector
when a longer successful run is found.

2¢

Pocket Algorlthm with

* A lucky run of several successes may allow a
poor solution to replace a better solution in the
pocket.

 To avoid this, the Pocket algorithm with
ratchet ensures that the pocket weights always
"ratchet up"
— w! in the pocket is replaced by w? that has longer
successful run only after testing on all training

samples whether w? does correctly classify a
greater number of samples than w'.

— Expensive computation.



3FFPocket algorithmf9iE, AT X MARIBHEZHuseful:

INPUT: Training Examples { £*,C* }. E* is a vector with £} = 1 and other
components, £*,, ..., E*,, assuming values in {+1,-1,0}. C* = {41,~1)
is the desired response.

OUTPUT: W = <ujps1,0, Wpt1,1, ***, Wp41,p> I8 & vector of integral ‘pocket’
weights where w410 is the bias.

TEMPORARY DATA:
* = vector of integral perceptron weights, <xg, 7;, ---, x,>. =
run, = number of consecutive correct classifications ’uu'mg perceptron

weights .
runw = number of consecutive correct classifications using pocket weights

w.
num.ok, = total number of training examples that x correctly classifies.
num.oky = total number of training examples that W correctly classifies.

l. Set v=<0,0,---,0> and
Tuny = runy = num.ok, = num.oky = 0.
2. Randomly pick a training example E* (with corresponding clas-
sification C*),
3. M x correctly classifies E*, i.e.
{x-E*>0and C* = +1} or
{r-E* <0 and C* = -1}
Then:
3a, run, = run, 4 1.
3b. If run, > runy

dba. Compute num.ok, by checking every
training example.
3bb.  (Raichet:) If num ok, > num.oky
Then:
3bba. Set W =1«
3bbb. Set runy = run,
3bbe.  Set num.oky = num.ok,
3bbd. If all training
examples are correctly classi-
fied (i.e. numoky = |{ E* }|)
then stop; the training exam-
ples are separable.
Otherwise:
3A. (Change step:) Form a new vector of perceptron
weights
*=x+CLEE

3B. Set runw =0
4. End of this iteration. If the specified number of iterations has
not been taken then go to 2.

Fig. 1. Pocket algorithm with ratchet. Perceptron weights, =, are com-
puted that occasionally replace pocket weights, W.

Iter. T Iuny W  runy Choice OK? Action

.. <0 0 0> 0/<0 0 0> 0 Bt no rmax-fEf
Run, =0

2. <=1 -1 =1> 0{< 0 O 0> 0 B! yes  Runy = Runy + 1
W=x

Runy = Run,
3. <=1 -1 =1> 1|<-1 -1 =1> 1 E? no r=rx+KE?

Run, =0
<0 -2 0> 0]<-1 =1 =1> 1 E? no rT=w+kE
Rune =0

-1 =1> 0|<=1 =1 -1> 1

< 1 oM Run, = Run, + 1
G <1 =1 =1> 1|<=1 =1 =1> 1 E?

Runy = Run, + 1
W=x
Runw = Run,
-1 —-1> 2 £ yes Run, = Rung + 1
Runy = Run,
8. <1 =1 =1> 3|< 1 =1 —-1> 3 ET no w=x-FE'

: Run, =0
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~
A
—
I
—
I
—
v
~
A
—

9. <0 0 0> 0j< 1 -1 -1> 3

Fig. 2. Pocket algorithm iterations.

e Categorical Input: BRHE—LEinputH N EEREN—PEE, Me—EHYHE, tba
color € red, blue, green, yellowiXtFFHITERN X



1. Generate four new dimensions: red, blue, green and yellow
2. Recode categorical value as a binary vector [red, blue, green, yellow] = (0,1)*

3. FRBAZNER(0, 0, 0, O)TU MEMIIGF 2 5K KA Zred, blue, green, yellowtiE, A4 RRredimt
=
(1,0,0,0)
e Also, 2 digits to RRPUFA—HFAENHIE R PIABAER, Flan:
o [(0,0), (0, 1), (1,0), (1, N2 A A AR RIUFFA—1FRIE
o {ERIXMAENIE: IIZMNINEISER, FEMEEZ Tneuronfthidden layerEE
e Inthe general case, if an attribute (e.g. color) can take one of ndifferent values, then nnew
dimensions are obtained.



ANN-Why?
Cognitive Modelingtd[RE:

1. To understand cognitive processes better

o Cognitive Process: Understanding language, learning, perception, recognition, memory, logic
processing, computation, attention, decision making
2. To computationally implement a cognitive process.
o tEMNEIE— N EBRAUEE
3. Compare and evaluate the various explanations of the cognitive processes

4. Predict outcomes of cognitive processes (FIIAZIITFZRIER)

5. May not be fully accurate to account for human errors and uncertainty -different from
computational modeling.

o Computational modelingfgRyE EBIEFRE, MEFREAE, Cognitive modeling "]
M7eE IEAIARRR ALRERIR R AR E 14
o HAthfYSA:
1. Rule based approaches
2. Constraints

= Multiple if-then-else coding can get very complicated

= Difficult to extract rules -tacit knowledge which is difficult to transfer

®= Cannot implement asynchronous data flow and parallel processing
e Cybernetic model of the brain at MIT

o The first ANN model proposed by Warren McCulloch, Walter Pitts, Jerry Lettvin
e 7£Brain Neuron/fy“Learning”:

o Repeated simultaneous firing of neurons strengthens synapses
o Skill learning by doing something repeatedly
o Skill learning, rewarding experience

e 7EANNAHJ“Learning”

o PFIAWT/EEANNKILH

o MTFHE (threshold)

o BIINTARFMINE, ils@nodeFlnodeZ [BfJconnection
o ANNF=MEEMNFEIAR:

1. Error correction learning
2. Reinforcement/Correlation/Hebbianlearning
3. Competitive learning

 XPNARHBEZHEZ: nodes compete for the right to respond to a subset of the
input data.



e Excitatory messages: increase the activation level of their recipients

e Inhibitory messages: decrease the activation level of their recipients

Interactive Activation Model

e ANNs implement Parallel Distributed Processing (PDP) where processing is done in a
distributed network in parallel.
o PDPEHtLfZFE T top-downFlbottom-upiXLEEFE R B EALSE—EETH — T EMUXFIRA]
XAFEF R REANMESSRY

Information in memory (knowledge)

What you
perceive

Information on printed page (stimuli)

o EZK Ftop-down{ZERFIAIEEMEEZIEHERZNR, Mbottom-upE BT LAIRERINES
ZAIERYE R /stimuli, EEINHFENEAIRHE, FE 7 'work XM EE, FRTXTRIE, BEE
REWNIFIENR, FAETARLEX T 2" work” X Na

e Interactive Activation Model .2 55— 3R15 EZ& B INAIANN by McClelland and Rumelhart

HIGHER LEVEL INPUT

- I e

Excitatory

Il Il

VISUAL INPUT ACOUSTIC INPUT )

o The arrow in the diagram represnet excitatory connections, and the circular ends
represent inhibitory connections.

o Note that an active word detectors mutually inhibit each other(Bl7E45Enoded, LfthhY(E
HBIY T BMEMRR, MM EprocessiXNinformation, RS 4ARE—MayerdBIE AR
nodek Hinhibithifl S (tbal— P EiERwork, FELRI T letter levelZ [, &Hi{sEZIword
level, fEword leveld, WMRBFAPMEMAINnode: “work"fl“worR”, BFAXPMEHEA(IEHSIER
ZNS, (BRMEE work’BIEENIAR], “work"&Mm“worR"& Hinhibitfgill S, 1A EH
) )

= FIXFERE—"MevelFfconnection® EZinhibitoryfy
= AF[EleveltyconnectionF] BAZexcitatoryt? AJ A Zinhibitoryhy



EREEERER
There are no connection between non-adjacent level

“Higher Level Input"Xfr F R 2R TESRAINER, tbaliEword level EEIRIEEXRH
sentence level, paragraph level&% ., f{1th=m@lower levelfZ#{EE (feeding downward
to the lower level) ,

WORD
LEVEL

LETTER
LEVEL

FEATURE
LEVEL

Il

VISUAL INPUT

Figure 2. The simplified processing system.

AT B MRE, MAERE T XM ERE SRR, EXREENER S
= Delayed higher level processes and phnological processes
= |gnored the reciprocity of activation that may occur between word and letter levels

and any other levels of the system
Input® & T visual feature detectors that are on for each letter

Activation value: Activation value is a real number. For node i, the activation value is a; ()(t
ERRinput). — P EBHpositive activation valuefInodeFf JIEMBFR A active”. Z1R—"nodei&
Binput, BBAaftI=4F inactive”fstate, BBAIXresting leveligRIFE — KT activation
valuefJ1&, B nodeflresting levelERa] AR —4%

Resting Level: Resting level for node i is r;. For units not at rest, decay back to the resting
level occurs at some rate 6;.

= Nodes for high-frequency words have resting levels higher than those for low-
frequency words.(?77?)
Net input: SEREE2ME, ER—TunitB]gESREIZNinput, BBAZTEAEXTunitiz
IEIRME RO, FZEnetinput: n;(t) = D7, aije;(t) — Doy Binin (), RRERXTARER
e;(t)/i;(t)¥&HIRexcretory/inhibitory neighbourfactivation#If8, a;;/B;, D BIFIRAIZ
excretory/inhibitory neighbourfgweight



Sample Run Of the word activations

Consistent with

Simulation Model = Pesentedine T e

activation

° W, O, R extracted letter activations
but the last letter can k
be R or K.

—

activation

Graph shows time-course of
activations for selected nodes
at word and letter levels
respectively.

15

FLEEXKER, TUERARRword node/letter nodeflactivationfgk/)\, TEIXE, REE
3 Fword to word/letter to letterfJiEiEH: inhibitoryf){ERE0, iR, MR "KHEHE
T, BatAEErRiEinhibitoryf)5S, FAFIUERIE TERERE, rEMNERIEIEEIR
0, MAREMNA. BAMRinhibitoryfl BB WIREMONNIE, XKEFMSE THEHIXF:

letter output values

probability

TIME

Final output as probability of the
different letters — wait until
becomes stable

Summary for IAM(model of context effects in perception of letters)

1. Visual input excites detectors for visual features in the display
. Active features inhibit other features and

= Activate those letters which contain the features and
m |nhibit letters which do not contain the features.
. Active letters inhibit other letters and

Activate words which contain the letters and



o Inhibit words which do not contain the letters

4. Active word detectors mutually inhibit each other then

o Send feedback to letter level to activate the letters they contain and inhibit letters they do
not contain.

m Feedback strengthens perception of constituent letters(A05& 7 AR X RGN FE
nodefJ#£27T)
5. Active letter detectors

m Send feedback to feature level to activate the features they contain and inhibit
features they do not contain
» Feedback strengthens perception of constituent features.

6. FTAXEPMHESIZ—cycle: ARG SElfeature input, EXEHFEfeaturer
inhibitELfh3% 7 iXMeatureffeature nodefAEIBE SEHZI T —Metter level, ZF 7T EHHN
BEZE, =EBEIT—Tword level, RRXZERABLREES, KHEFIRIE, LHHK
KZE, 2R3 —TABRIFNENIIKEE

ANN Design

e Weightw; @B—TXE: w; € R, B—T—HEEHCKRE, EEREZLTFEIBCHE

McCulloch and Pitts Neuron Model

The weights w; take on real values w; € R

X3 a =%_ Wi
N‘ i Activation 1s the weighted sum of all
" v y=fla) incoming potentials.
Wy f(a) can be any function that generates a spike
« / (high value) at a given threshold value o to

mimic the scenario of Action Potential.

o FIARIIAEEI: {F— P nodetBiERNARENXTnodefHiE 2 B A HINESHN AR —H#M
® The Activation Function:

1. Threshold Function



fi(net;(t)) = 1if net;(t)
fi(net;(t)) = 0if net; (¢t)

e Output Function:

>
> 9

* The simplest node functions are:

1. Identity, f(net) = net, and its non-negative variant

f(net) = max(0, net)

2. Constant functions

3. Signum function

o #EHE—Mfunctiond, XZ—IERE, FIUNERIHMAf(2)/ VTONMER, ENE

A=
=0

flnet)=c
+1 1f net >0
f(net)y=9 -1 1f net <0
0 ifner=0

4. Step Function

* Simplest function that captures the idea of a
"firing threshold"

« Can be used as a class identifier

Very small change in net,(z) can
cause a spike and hence change the output

flnet)=aif net <c

=b ifnet >=c¢

f(met)

(OFF)

___________________

(ON)

net

4R

£

output



5

* The ramp function 1s continuous and almost
everywhere differentiable in exchange of the

. a) Ramp Function

simple ON/OFF description of the output.

a if net < e
f(net) = qb if net = d

f(net)

(OFF) |-

(net—c)(b—a)

a+ —Fg otherwise

d (ON)

net

5. b) Piecewise Linear Functions

* Consist of finite number of linear segments, and
are thus differentiable almost everywhere.

 Easier to compute than general nonlinear
functions such as sigmoid functions.

* Can be used to avoid sudden change in output like
the step function (from O to 1).

f(net)

26



6. Sigmoid Function

* These functions are R
continuous and wf)= = | 7
differentiable everywhere, W
and asymptotically g Ve
approach saturation values Y/

(0 and 1 as shown in the o« )

. MEem /
picture) =

¢ The parameter s controls Lt
) ) lim f(net)=1

the slope of the sigmoid net—-+oc
function. Greater s value Tim  f(net) = o
will give steeper curve. netmr e

7. Gaussian Functions

* Continuous bell-shaped
functions.

* Also called 'radial-basis’
function.
f(net) asymptotically

approaches 0 (or some \
constant) for large =
magnitudes of ner, witha  f(ner) = ); eap— L (LI

. —€exp| ~( ”
single maximum for V27a 2" ¢

net = u, say u = 0.
Greater ¢ = wider curve.

o EHESHEARTRZPILARZEOutput functiontVik®

e (? ? ? ) Differentiability of output functions is desired to manipulate behavior by adjusting
parameter values



Principle Component Analysis

Feature Reduction

o LM A\BEMHET AR, computationally expensive and time consuming

o FRUVERIRHR, 17/l MeatureSiEE M — Meature, SEALIANZ SHENERE I techniqueXk
EMA4EEEE: These features are more important in the sense that they are better able to
discriminate or classify the data, X#FRIMENYfEIfeature reduction

Means of feature reduction
o TIERE: BEEMIE—HEE, EEMEHAERNIE, information loss, HHEMFEEELLIT4MREITRY
SEHERNEEDEE, EANIELEEHLI—ET

o ENTE_&AELEMIIEZE: Replace the componenet z; with the average of all z; for all
data points P and then find the error

new vector: X' = (z1,&,...,Tiy Tit1y---,Tp)

Each modified input vector x “now differs from the
original vector by (just one component is different)

(X —X")? = (\/(x1 —x) .+ (x, —x,) )= (x, — x))?
So, the mean squared error for all P transformed input
vectors,

_ 1 & L
2 2 .
E(xi _xi’) = _Z(xij _'xi’j) = variance of X;
J=1
o B X FrIINBE B ikigs; Berrorflz; Bvariance, AR FENBMPVEIE, #EITX
HMEZ fE, MMEEXT:

= fifRIE REAIvariancefdcomponent
IR componentE it average feature

PCA-ANN Approach

e A Principal Component Analysis Network may be used to extract the desired transformation
rather than resorting to the mathematical derivations.



Y ¥ Y3

Weights w;;'s

Iy ) Iy Iy

o y; =" wjz;, yEXHMEEEAR

o yfoutput nodeBE, &HFE— (1,x) Mweight, &EHEyToutput node, TED
output nodedEIIX (1, x)Bweight, ZIRHRICEEIR Neigenvectorfrow, FIRRGRHE
— Ny, X)B9—"eigenvector

o EEFERAI(x, NHEIET (Y, 1), BEE (yx) =T DFMTERT (v, 1) 7T

e XZE—"Feedforward network with no hidden nodes
o WFEHPWHNEERTIARTA:
Aw; = nle;f — KW,
X FH, [ =iteration, K depends on the algorithm
o One option for K = YlYlT suggested by Williams(1985)

At every iteration through the 7
training period,
1. w;(weight matrix) converges to
Wil =1

2. The direction of W is the
maximal eigen-vector of S(7),
the covariance matrix of the
data set, so rl - -

3. W lies in the direction that
maximizes variance, which PCA network for

Ce . example 5.9 and
minimizes the loss. 5.10.

e For multiple output nodes j and input nodes i, an easier representation of the weight change
rule isAw;; = n¥;(X; — Y0, VW)



o FHExample! !
Consider the data from Example 5.8, with 7, = 1.0, and initial
weights (0.3,0.4,0.5).

For the first input x; = (0,0.2, —-0.7),
y=1(0.3,0.4,0.5) - (0,0.2,—0.7) = -027 Using the K, suggested
by Williams,

AW = (=0.27(0.00,0.20, —0.70) — (—0.27)(0.30.0.40,0.50)) .

W = (0.30,0.40, 0.50) + AW = (0.278,0.316,0.652).

For the next input (z3), y = —0.23 and
AW = (—0.231(0.10, —0.20, —0.30) — (—0.231)% (0.278,0.316,0.651))

W = (0.278,0.316,0.652) + AW = (0.240, 0.346,0.687).

Subsequent presentations of a3, x4, and x5 change the weight
matrix (in this case, a vector) W to (0.272,0.351,0.697),
(0.238,0.313,0.751), and (0.172,0.293,0.804), respectively.

This process is repeated, cycling through the input vectors

becomes (—0.008,0.105,0.989), and the third iteration changes it
to (—0.111.—0.028,1.004), converging towards the first principal
component.

e A PCA-ANN only computes weighted sums of inputs, and carries out Hebb's Rule learning, which
was originally devised as an explanation of learning and modifications in biologic neurons



Unsupervised Learning

® Proceeds to discover special features and pattern from available data without using external
help(tb#i2i, %A desired output”)

e [W:
o Clustering
o Vector quantization: [MEEft, HEMHABRENSR, RIAM—TXENAER, MMELERE
o Approximation of data distribution
o Feature extraction
o Dimensionality reduction: [§4, IEERLREERMET, BRENZETH, S2—HTE

R EFENITRE
o AZHUTMEZINRAMRIIMAENSITREFER

Clustering(3:%)

o REAZIEHUNNREIFHED ENHEDHARNARHEEZNFE) (subset) , XEFILTEER—
T FEFNRANZRHBERUN—LEREE, ERANEREELTAFEMENZEERS,

e Given a number of data points, determine a set of representative centroids(EX @ E— T RE
B, HEIMMREL”, IR IREAIRTRAAEEE, SREXMEHEIER 2B EIMcentroidsaEE
BERAMERAE T IXTREN., FilAcentroidsthifFRAprototype, cluster centers, reference
vectors)

e Data belongs to the cluster whose centroid is the closest

>
o XEHF—AEIEFIMHITAENREDH, BINERENNE, FIULIE—ARERENRET
5



& w
B @ e G

® ey

Reasonable number of clusters Small Number of Clusters Too Many Clusters

e (lusters are evaluated by measuring the average squared distance between each input pattern
and the centroid of the cluster in which it's placed

1

Ecluster - Z H(pattern — centroid)\|2

patterns patierns

Etotal - 5 Ecluster

cluster

K-Means R¥EE %

o FEAZINXTBFREEE R EK-MeansRREH AN B HRERER

1.
2.
3.

B AEEEEK N centroids, &P centroidsfFE —NRZE, FRAMAERK MRS
Hinputzy,...,T,

TEESNinputiEE XL centroidsiEEE, HEXEN Tz, BS&IIMNCcentroids, 1Bx; assigna
IEE S Fcentroidst RAGERZE

RIEMEFI SR B R AL

K
ZJCk ZZZH%—MH szkzllwz ull”
k=1 k=1 z;i=c

=1 ;=
Hoh, NABFRER, pRRTETMRENcentroidNIE; d, KR T HEUERMINEZE (R
ERRBIER) A1, REHEAINEERRI0 (8BFm) , BENMIGNBERENTLJI(O),
MELHNRELNEEFEA &N
NTLHES), BRiEERNNd, XTMEREENHNTBERIES NinputiEl o IR E &
fcentroidsiIEM SR, BMABERT
AREEEd, R, KRB, XPMHEREINuKRS, F3:
> ki
2R, WFE—KER, B8 PREDMcentroid NI E A D L RX DR ENFIE HUE
mRIFESE

S ATER, BEZcentroidfIfIE & ENZTS

K =



Dt E KB R EPK AN RERHREFQ, FPARABAER-A
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y
DR THEPHBERR, UREBENERERX PR KER,
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AR %X

v

Nt HHEN KRB PIA R RO EEAZEIHERE ST H
Fr A AR A BISL T X B R X o LBy BB P07 Ao, BT (OME

)t

HEE P OHT (O EEKEKRE?

REZR

Vector Quantization

e Applies unsupervised learing to divide an input space into several connected regions called
Voronoi Regions, representing a quantization of the space

® Each region is represented using a single vector called a Codebook Vector(CV) which are also
called Voronoi centres

o EIXKE#FRAIVoronoi Diagram, H&/\“*voronoi regionsFl/\Ncv

® Every point in the input space belongs to a region and is mapped to the corresponding CV, FflA
WIFZSMARESHmapZE—1CV

e AREFINMEREZIMAILIL, BEFIMNESTRAREHSCE —1ELldesired output
fydesired region; TR BEIMNIEFERASBNREZEEMAIUIIT

e Therefore, the set of CVs is a compressed form of information represented by all input
data.

Approximation of Data Distribution



b

® The data distribution in b is a concise description of the larger amount of data in a drawn from a

probability distribution

o Data distribution in b is considered to be an approximation of thatin a

o Points in b may not be a subset of points in a, can be done using unsupervised learning

" MREMITEEFINE, STRERE—Tcentroid
Feature Extraction and Dimensionality Reduction

e The goal of feature extraction is to find the most important(distinguishable) features, i.e., those

with the highest variation in a given population
e |Important side-effect is reduction of input dimensionality and thereby, improve in processing

time and cost

Winner-Take-All Networks/Competitive Learning

e During training, the output unit that provides the highest activation to a given input pattern is
declared the weights of the winner and is moved closer to the input pattern, whereas the rest of

the neurons are left unchanged
® This strategy is also called winner-take-all since only the winning neuron is updated

® Patterns in the same cluster are as alike as possible

Hamming Networks



e Hamming Distance: JXBAEERE, EERILH, MTEFRFHEZERIXAES (&IiF: Hamming
distance) BANFRBNMAUEBNTRFHHOTE, BOIER, EMEE—TFERHETIREBIN—
NFRHERRE FHNFR T,

o 101110151001001 27 [GHNAREEEE2
o 214389652233796 7 [/ NARIEEE3
o tbiNfEmatiabF N EEZ BHNBREEBNE AWM EE 2 BAENS 2R GHNE DL, b
(0, 0)F1(1, 0)Z [EJHSXBREE B 20.5m(1, 1)F(0, 0)Z [BIKIXAREEE /91.0
o BREXBEMMAMENZ: the number of differing bits, of input and stored vectors.
o SYEENMERE T NKRBE_EENIRFEMIZITH GEARENE N TERERM NI ETN—

)

e ENRAIEWMADEREETMMnE@E (MEstored vectors) A network to calculate
Hamming distance (H) between stored vectors and input vector

1 n nodes

(new input vector)

e P nodesHili ENKR T HP P stored vectortmE@E, fn nodesBiNEEXZREZRR T —THAG
£, PN nodesiiBiX TMEMAMER DN TE D (FMEinput vectorfI4E) , EFAIweights on
links from input layer to an output layerf{,Z 7 component of stored input patterns and their
weight, weightZ2& MREREITEDFRLA2, TMbias unitZEERN—

® output nodes generates Hamming distance between pth stored pattern and the input pattern
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- Output is linear output calculated as o = WX+0

e Example 5.1

e |If all bits match(w; = %) then output is 0 otherwise <0

e So we can determine which stored pattern is nearest to a new input pattern by taking the
maximum of the outputs

Maxnet
W
</
l/—\
St s S
+6" <}‘. ""'—E 'l" :-';I/->|\ .‘l+9
P A
O—=—0
+H0 5

e A Maxnet is a recurrent competitive one-layer network used to determine which node has the
highest initial activation.

© =1 €< g, HEXBMMBW, BMETRERHT— T nodeTH0, FIMInodedBHim
ORYRHMRISLE, FBALLESAI908InodeRiZwinner
o WFETnode, E—RMiterationF =W HIHInodeJoutput AMEFTE SHIE
o node function f(net) = maz (0, net), net = >\ ; w;z;

o Lk#0: initial activation values = (0.5,0.9, 1,0.9,0.9), € = —% and 6 = +1



o B—REH:

w0, = max(0,e* (>, z,) + 0 *z;)
= 01(z1 = 0.5) = max(0, —£(0.9+ 1+ 0.9+ 0.9) + 0.5)
= 0y(zy = 0.9) = max(0, —£(0.5+ 1+ 0.9+ 0.9) + 0.9)

DU, SREFRET 2 EHAENEN, ERANE0, HEIRHT—MIBRRO
o BATMENHATEERMaRITE, SR ENMIEATEIENA? 2

o R EEHZIMHamming net@ ERITE@EMIAstoredm =M TINBREERERI, MMaxnetlll @
FHEIHRARH

Simple Competitive Learning

. 1 if node is a winner
Output = ) .
. 0 otherwise

|

Output Layer with
inhibitory connections

Kohonen or
competitive

layer
Input Laver

Kohonen Learning

o & LEiX#¥ FHigeneralize version which R? — [0, 1]tB#&#R}9Kohonen Learning

o WFXHEFH—TNE, B output nodeffiERE—TRE, MXTEREMCcentroid/stored
pattern/stored vector HERweight vector (IXEM@E) RAFRKN

e 7FE—"distance measure, FINEMRIER, SMEWIES, YILEEXRIER, NREEEFSE

o JWFE—inputvector, #aEEMmBloutput layerBEZX, ITEXNinput vectorflE Moutput
nodefweight vectorfYiEE, ickhd, FE&Z/J\BIdEoutput nodeFiZWinner node

o FNEFY, FAAEIterative Training, ATEBREHF, HAEXNABNNERSEHHIT
B, meREMwinner nodeIiXERE, EFEENER@E2HEBEHALIXPTRENHACQEH
plaw Ry



The jth output node is described by its weight vector
from the input nodes,

W= (W, .3 Wjp) [={1,... n} input dimension
A competition occurs to find the “winner” in the outer

layer node j* whose weight vector (or “prototype” or
“node position”), is nearest to the input vector i;

d(w,1) <d(w;,i)  where j={1,...,m} # of output nodes
k={1,...,P} # of data points, d is Euclidean distance =

dw,i) = X0 Gy —w,,)

e THX—TEERIR 7 — FEdnet inputBEAITERIES

42

. no . 2
d(WJ. ’11) = \/Z,=1 (lk 1l wj,z) for kth data point and jth output node
* When expanded
2 - — . - .
* Assuming |l jll=1lw;ll=1 are unit vectors where
lpll=/pPi+p3+-+pPi=yP P
* The distance can be calculated as
* So, the distance will be minimum when i.w (dot product)
is maximum (llill llwll cos @ is maximum at =0).

» To generate output i.w, use linear output neuron.
e ELQwinner nodefINE@EHdata pointiii, MEILNE@ME/GEdata pointfI 7 @)
Aw; = n(i — w;)
Wit = wj + Aw;

o IR, H—THFHREXNEEAT (Aw; <€) , PBaltiRw,MEE

1
w; = Z'l(S',l
! Zl dj1 Z ’

I
FE:

- 1 if the jth node is “winner” for input iy,
0; = .
I 0 otherwise,

R RIR SRR EENRMR, mRaZthe average of input vectors for which w; is the
winner

o EFEIMIRER, FEIRAMUANNRE, AIUNMEHERFEIR, MMRSFIUEK



Figure 5.4 Simple competitive learning algorithm
Initialize weights randomly;
repeat
o (Optional:) Adjust learning rate 7(t);

@ Select an input pattern iy;
e Find node j* whose weight vector w;, is closest to i;
e Update each weight wj. 1,..., W« using the rule:

Awj; = 1Oy — Wi ) fort e {1,..., n}

until network converges or computational bounds are exceeded

o {ER SRR HRMNERBES—1FHY

e Using three nodes does not guarantee that three "clusters" will be obtained by the network.
Close initial values may result in splitting of a cluster into two

o HFEIJRAMIIR: samplefIFFMIININECOEEZREZID

K-Means R¥EE %

o FERIIXEBRLMREFHH—T
® Applies batch update
o FEMHFKIX BRI BERZEK-MeansTREE AN BATRER

1.
2.
3.

BREEREE K N centroids, B centroidsf{&R—18RE, FRAMEBKTRE
Finputzy,...,x,

HTESNinputlEE X EcentroidsiIEE R, HHEIKEIN Fz; BiS&iEcentroids, #z; assignta
IEE &L centroids RAGERE

RIEMERI USE BARRER:

K K K
HO) =327 =3 S e -l =30 3 diles —
k=1 k=1 z;=c k=1 z;=cy,

Heh, MEBFBER, pfRTENREMcentroidiINIE; dp R T HEBHEMINEE (R
BHEZALER) R, ZEHEKINEER 0 (B , BMIGNERERTLJI(O),
MeESNZLNEEFES &N
NTLER), BREERNNd,, ITMEREEIHERNSBERIESNinputiEiR o EIEE &
HcentroidsBiE a1, UMABERT
AEEEdL R, RKRBEBOY, XPHEEINuKS, F3:

He = Zn s
i EiR, WFE—KER, 8PREDRMcentroid NI E A D L RIX DR LN FTE HUE
=HESE
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FI)SAUER, BEElcentroidI BN RAENE

Dt E KB R EPK D ARESWHREFQ, FPRBAE-A
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y

DRTFHEPHRERR, MRFECNFRERXPOHRKESR,
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Algorithm k-means Clustering

Figure 5.5 k-means clustering algorithm

Initialize k prototypes
w; =i, € {1,..., k}y, £e{1,..., P}

Each cluster C'; is associated with prototype w;.
repeat

for each input vector i; do
Place i; in the cluster with nearest prototype w;.,

end for
for each cluster C’; do
1 )
wW. =—— ll wherel ¢ ; | is the cluster size
d lc.| i €C; J
J
end for

Compute E =Zk: ZI i, —w; 1%

until £ no longer decreases, or cluster memberships stabilize



The simple competitive learning algorithm conducts stochastic
gradient descent on the quantization error

. . 2
E:Z | ip — W(ip) |
P
where W(i,) is the weight vector nearest to i,

The number of nodes is assumed to be fixed, but the right choice
may not be obvious. We may attempt to minimize
E + ¢(number of nodes) instead of E, for ¢ > 0.

The above adjustment is called Regularization (one approach).

o thFfEidsimple competitive learning algorithmt v LA{E FAFEH 18 E T %5k BT A Rerror
surfaceMERHR/IMERTRFEINEN

Learning Vector Quantizers(LVQ)

e ALVQis an application of the above, uses winner-take-all network and illustrates how
unsupervised learning can be adapted to solve supervised learning.

o HItREER, EAXNSAMBELEEIE TMINNNHNRET, REEEXTPREN
centroidfiiit, FE@XTRER centroid#EF"fF 7
® Learning rate[/iZ2 K& epoch FREAY: n(t) = THRERN(t) = a[l — (&), ERXTEHEaZTE
HMAR TR F1HIEL
o HIRER, M LENETAZES
When pattern i from class C(i) is presented to
the network, let the winner node j* € C(j*).
If this is the correct class i.c., C(i)=C(*), j*
moves closer to i
AW ) = n(t)(i; — Wix)
Otherwise j* moves away from i.

AWy == ()i, — W)



Figure 5.6 LVQ1 algorithm
Initialize all weights < [0, 1]
repeat
Adjust 7(t);
for each i, do
find node j* whose weight vector wj, is closest to ij;
end for
for 0 =1,..., n do
if the class label of node j* equals the desired class of i
then
ij*,l = ”(t)(lk,l - wj*,l)
else
AWy = = (1) iy = Wis)
end if
end for
until network converges or computational bounds are exceeded




Unsupervised Learning - Part II

Adaptive Resonance Theory BiEMNiEIRIEIS

Allow the number of clusters to vary with problem size, HE9%EERAYY FHInodeikAY
A&, RINFETRIcluster prototypes

Motivation: RZMENBZZXIFGIER: FTIIZk, EIIGHTEHEZNBNRNE T — LR
PR RORHMR, RUELEINGR, HEX DL T AR RERRSEFREIRE 7, BRALLE R
BIONEMS A B H T urtherfER T, BREXRE, HRBIBAZIAZEN
training datafafRZ=ill4R, BIGNLEETEI T —PNEROERI, FEXEFINLG, WRIANGEHN
pattern, —NATRERAERIIE R Z: Training on only the new silhouette could result in
the network learning that pattern quite well, but forgetting previously learned
patterns. XEI{&, ARTFIESRLIET, firllUpreserve its previously learned knowledge
while continuing to learn new things

The user can control the dissimilarity between members of the same cluster by
selecting a vigilance parameter

"Resonance" refers to the matching process

ARTPRIZEAIZIEIRAFIERF: ARTIAER BIEE SMEBRIGIIMAN, RBIIRENSERIQE
ZEMAEXNSAEEMEXHBOE 7 BNLEREMBERMNE, XBUEREIRNME
BE, EEFBAUNERZELXNRERE, HBABSIZEIEXNINVE, UERESZERE
MM B S 2R LE N BB SEIEARNEME., SEMERTBI IR, MEMEPIHE—
MERE, RNZIISIZEXELBENNE, BTFAKRTNEEZER AR ERBANFIEEZEE
o

Winner node 1\

1

|

I Output layer with
I inhibitory
|

1

|

1

I=1..n

connections

(b3,4,14.3)
Input layer
v ©
rlj*(new) =1t * (old) *x; T T
imi ; Fi 5.10: ART1 network.
If similar, modify igure networ

weights to bring closer

o E¥{: ME, comparison layer(input layer) #lrecognition layer(output layer)

o LEEMAN: BFEEH#EbinaryfVE, EXXFHAFIZE—E (comparison layer) HY
18, SHB=/: a component of the input pattern (—HEE=EX LA, input
vector here) , a component of the feedback pattern (5 Z3KEIRIIEFEL) , and
a gain G1 (BmizHIIASg1)

o LEREHESEM: RES=1inputEAMNZEDLF T input@1 (active) HPIRSHIBTEEE
REZTSHH

o INHIEEBn M MET, KBMBNERSE, nIIMUepig, PURICFERE, CBRY
BMEEMECEGEINNEREZ TR ENQERARERE T, SEIEFETERMEET
LIETRARBMNEXIFTEES, KA TEmE N, HRRP0, INNESTRETH
MNER MM EE, —TE2BANEGES CRIERENAENEE, S— T8 IAA
BRIMESHAZICENINENEE,

o IBIINEIE (fEfarhanafViRtF L8 B HIZE) -



G1: GIRERMEESLEBREEBX D MNETITHNEME, E—FRaEdE,
MANNEHRERBES (RIRESE0) , BRI AN TILMEBML, 61#KIR
BN, AN ESEANRGESNER, BERBAZIANE, HiAX
BHAFERIRESHIRR, C1REMKIEE N0, BAXNERENG L EEEUR
THFMAESHRIFESHEER: WRxi = tij, W, ci = xi, HMci=0, 7]
MELIEHIE SRR ER L REREBX D METITHREMER, MWEFA
BITHERCIRERZRESCENMAGESEiRAL, ZECINIEREECEITEL
WINgE, LERScixiMtijEER(ES, MERNNI, Neikl, BNA6.

G2: GC2RUEFARMEEERinput pattern@& 10, FMAtLHE—MERERMNE
Hpattern EEAI—Z4EEL

o MAMREFS TR ERERE, BUEHIEBIEHE, BorMzrEResetES, &
BRHENZBINEERMER, FEEXTRE, F—THERSHNABEZITESIFER
H—MIFNES, BAXTMIGESHEE, 5 THMERER, KMEHLTLERS
—BERRORALERBEAR L2 7T

1
2
3
4
5
6
/
8
<
0
1

1
1

12
13
14

"""Pseudocode
for x in pattern:
for i < m: HAXIZEEMNEZITTE
KIGIRBERZTT]
Bt (JEMES) RS2 B{EpLLRNSE
if (t*x) > p:
XML RjE
FHRANED (FIRNE) |, t(EINE)
break #FIAIES F—"input
else:
MIERX TR E T ASHIFIES (EBBERZEERI TR
HIER R AEE])
continue #FFiRH T—"3RBEETTH B#H1TEERRBN EX

BUNRIEFH T X AZ 2 BRINAKAZRMESE T, IBABESFEIHM
AJcluster

o Each input pattern is presented several times, and many be associative with
different clusters before the network stabilizes, ZH#AES T HINEVIRE]T IRRE
HEZTRIEA R, RIRINENM BN EL R IEE

o signals travel back and forth between the output layer and the input layer
("resonance") until a match is discovered.

o WMRBH T XALZZEMAKAERMMETT, BARKEFEIFHNcluster



Figure 5.11 Algorithm for updating weights in ART1

Initialize each #;;(0) = 1. b;4(0) = %r
while the network has not stabilized do
1. Let A contain all nodes;
2. For a randomly chosen input vector x, compute y; = b; - =
for each j € A.
3.
repeat
(a) Let j* be a node in A with largest y;.

Signal sent back
(b) Compute s* = (s7,...,55,) where s} =t . x;<— _*©

Zn . to input
' . s :
(c) f ==L £ < p then: remove j* from set A . Notenough

T

i—1L¢ similarity to input
i . PR s H . . -
else: associate = with node j* and update weights: (1 weioht of

1* 1s updated
te ;- (old) z; LI isw

0.5+ 37 tej(old)zg 4@

tf.f‘(new) - tf.j‘ (OId)Tf s—— xand tare

binary values

by (new) =

until A is empty or x is associated with some node

4. If A is empty, create new node with weight vector using eq. 1 for
end while t,+(old)=1

. EJL‘XEEU—HQE}T\EHEHEE’\JESUU%H

o FBAHECvigilance testigAIRLEBMLUERIELEIM K

e Top-down weights are modified by computing intersections with the input vector, so
that the number of 1's gradually decreases or remains the same. That is also the
reason for initializing each top-down weight to 1.

e Given sufficient number of nodes, "outliers" that ought not to belong to any cluster
will also be assigned separate nodes.

o FENX/LERERZEquote TIRIFRIETE

Topologically Organized Networks, Self-Organizing Maps(SOM)

o Topology: RZEEMMABINEXRRTMAZRMNNOACRIKN, “FIFEIS (FFr9hr=ZE
FAREZMFEHE, LEEIEGITETEZRTIEZMERE, ”
o specified in terms of neighbourhood relation among nodes
= can be expressed in terms of indices and links among prototypes or
centroids
= distance is measured in terms of # of links
e There is a variation of Kohonen Learning which combines competitive learning with
topological structuring such that adjacent nodes tend to have similar weight
vectors. It is called Self-Organizing Maps (SOM), or sometimes called Kohonen or
Self-Organizing Feature Maps (SOFM).
o Kohonen Learning?Epart I
o Fft4llself-organizing, FEFlearningfffR T INEm@Er] AIKEIFH BEMR/LEST
EREEFRSHEINRR, ER—TEERECRARITRA T BAEFMER




o Competitive learningffoutput layerZEEHEHNHIZER; topological structuring requires
that each node also has excitatory connections to a small number of nodes

o MZAMNZEIA—HNZE, ZAIAFEIIRAE Twinner node, BIEXE, BT AZEwinner
node, IEZEE Twinner nodefineighbour

e WH:

[e]

[e]

[e]

clustering

vector quantization

approximation probability distribution: The centroids in a given region is
roughly proportional to the number of input vectors

—@®
E.g. Approx. probability €00,
dist. using single 0 1

dimensional topology 0 = ——2=3 =4 —5—6—1

proximity of prototypes: suppose we want to interpolate the outputs of the
prototypes - that is, we need to know which is closet and the one that is
next closet

FrA#R$ME 2 BESiLclusterfRIFMAIRUEN IR, XIFF7 ]Apredict the order of
the prototypes, &M, IXEFENMAERKR, FFLATAERE

| A

* *




o RLEEIXSKE, HEIEMEsample, MO BN R Ecentroid, MRFER—DTRAREBIAFNEITHIM
ZHE, MG LEENE—E, ErectangleEEAIAR Ncentroid will be the winner node
for all the sample, MBII=TREHiEHIT, WNRRE THINEMAIIE, not only one
point but its neighbors to be pulled towards the cubefRE_—#¥¢, FRLAZNSRITERTEH5
K, BOIMUDEHRN

o B{KEEfEHexanplefEslide

o —HIRFEEAprototypeiE L4, MMEmneighbour XM

Distance Measure

o ERAEVE, TEMprototypeRBE—"1index, FAMABITIXindex, BJAKEIMELREY
prototype, B! neighbour distancefIfi/EFHEBETEAR—HR
e An SOM's execution can be viewed as consisting of two phases:
o "volatile" phase: prototypes move a lot
o "sober" phase: prototypes slowly settle down as cluster centroids
o F#Asober phasethB7Econverge, {BE—"ordered map (thFiEE T Lfprototypes) HIHIT
EETFvolatilefiEs
e A topologically ordered configuration is reachable, but the network may move out of
it, as in general, there is no energy function that is optimized (no gradient
descent to reach minimum energy state) in the weight update rule.
e iR#Eexample — topological adjacency no longer guarantees proximity of weight
vectors (weight vectorsZ[B]f9? ? BEE) tWFEIRIRIEI exanple, A 1ESEHIcentroid
RMEGELT

e Topological vicinity is defined by the topological distance D(t) between nodes

— The neighbourhood N(#) contains nodes that are within
a distance of D(¢) from node j at time ¢, where D(?)
decreases with time.

— D(¢) does NOT refer to Euclidean distance in input
space, it refers only to the length of the path
connecting two nodes for the pre-specified topology
chosen for the network.

* To make topological adjacency represent
proximity of weight vectors, decrease
neighborhood D and learning rate with time.

o Fft4Edecrease neighborhood D? ? ? RENDEHE XHIFNcentroidz [B]fIpathiI<E



Weight Change Rule

* If N(#) ={j} U {neighbours of j at time ¢}
where j 1s the winner node, and i is the input
vector presented to the network at time ¢, then
the weight change rule is:

wp(t) +n(t) (i —we(t)). ifleN.(t
welt +1) = { _w’;gt;f 1(t) (i — we(t)) e \jir;

* Weights vectors often become ordered, i.c.,

in the
input space.
o EER, HENENIHRZZERMIneighbours—iEIARE, WMRAZEneighbourhoodhiEF AT

Kohonen's SOM Learning Algorithm

Select network topology (neighbourhood relation);
Initialize weights randomly, and select D(0) > 0;
while computational bounds are not exceeded do

1. Select an input sample i,

2. Find the output node j* with minimum
Yk=1.0 D)Wy (1))?

3. Update weights to all nodes within a topological
distance of D(¢) from j* (including j*), using
wit + 1) = wi®) + n(O3E(1) — wD));
where 0 < #7(#) <n(#-1) <1 and j € Njx(2);
Weights of non-neighboring nodes are left unchanged.

4. Reduce D(t) and # after a time interval ¢’
end while



o AfGpptifHexanple
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