Lecture 01

e “Present a virtual machine”

o Virtual MachinetgFI2 B, MEMIIEEIREELNERS TEEHRSINEEN, BTE—
TREBBMEFHNZEITENRS., S UEEEX computer systemBy— MR, RFEFESEFR
RIREME, (BENEEEZRERASRIELNT 3K, tEWAIAEwindows EZ&RIinuxBIEMAN, FEZ
FHLIRERE, BEBEMHNSS, MmEwindows EZEMIinuxE LIRS A ERNEES
5, FrbAOXEHERZERE B ETT AR

e Kernel2ft4 (MEOSHREEMN—ID)

\/ \/
CPU Memory
Kernel Wz 2IRER AP REARN—TE D, FAUtETIRIERST, sIUBRIMbALEE
ApplicationfIfE & HIE, thEEiR, thARZNARFREITENBEMHRTAL, thAIDURE—
MEF A UMEHRTARIRERZ /D il — T 2F el UREREEH 1R 2Rt E, AERN Tt
LEEusers ki, BEEMEGHTIRIEASRERM, AUAKEREMHET —MRRINGE, KE
BN FATE 7 BB 228 B SR AN SE A IX EE IR ROHRE
=IVERIEN . operating system is (the one program running at all times on the computer

—usually called the kernel + system programs(which are associated with the operating
system but are not part of the kernel).

® OSEEATTIARY?

]
Devices

HDW o‘oes SN O{elfa-h'vna égs—(em Stabte 7

27 fli {auncl,\ -1 0S, Ketne iﬁ%%%ﬂlmdezl

\u/ |soded by
l

oade).
\U/ loaded ky
BIOS (Busic it [output system) 222 UEEL (Unifred Extensible Firmware Iniepa)

> BIOS I L AL A U AR 2N LRI F 4T 1 44, VBT
BIoS WA yBfh% ", s TAGLEE Y 4 -4

L)bﬂ‘f &tha f

)‘l)zla; B
QR AL .
Lo CT0 ¥4 Instruction yegister AIGE FLFRENXH memspy [ocation
L? T&lﬂ :h;ﬁ- Lou‘(S'ﬁl«af ,_oo\olel’
1> outStrey l,aole), %& kernel jbﬁj_—:y VQM\"j D“J#’/ﬁ

o Eichn#Ekernel »EMkernel EEHITE—THEMMIEEM (CPU register, device controller

I&RY) 48%D%A1L (waits for some event to occur, fieventf &4 FE Esignalled by an.

interrupt,_interruptr] A& Lecture 03)

Lecture 02

Hardware and software in computer systems

o —NEEMITENARZTUD HIUNERS: User, Application programs, Operating System,

Hardware
user user user user
1 2 3 e n
compiler assembler text editor coo database
system

system and application programs

operating system

computer hardware

e Hardware Component

o Central Processing Unit
Central Troceseiny Unit: BOSZRL ‘}‘i’i, /fgelecﬂ«uvu'c_ cirenit yeSpmoble Ju ecvt iy ‘(:Ll’, {ag-thuctions

0 o Cow puter progrom

o 4otV £, Lde Register
> H-'el/\ Qi’ee_al S{b}age, alea ,ﬁﬁ;*ﬁ, d»bir_ﬂ‘gﬁ“ '%1% Mgﬁﬁ 12&3\'6{81«*

12 MAR Memry Adress Regivter Hik e mewry Lot of cltn dhat el & Lo cceesd
MADR. Memory odlata Legistor Hilds dotn tht cs Leig Alanclered o> fom ey
Ac Accumilotor fladcrichmetic ond logie AT B ¥ A LRI
% Doglam Counter 5 TR ERAH AL

CIR Cument inshuction regisiov CEELEL RN

o Memory

= Hardware components used to store data

1. Volatile(=HL7iA)
2. Non-volatile(<HA{RE8)
o 1/0 Device
m As the name suggests, input/output devices are capable of sending data output to a
computer and receiving data from a computer input.
o Von Neumann Architecture Model

mouse keyboard printer monitor

on-line _\

graphics

CPU disk USB controller
controller adapter

disks

=

memory

Central Processing Unit Central Memory Unit : | Inputand Output Units |

................ |

H H i | |

Arithmetic Logic Control i i ; H [l
Unit Unit b i |

r Accumulators J Instruction Decodelq 7 7 1 o o r] o o

Stack Pointer Instruction Register

]
MAR MBR
%L) Control Bus]
E[- Address Bus]
Y
:?;F Data Bus]

s AEEHEEosHIIAT, MMLSPEHERITHRMEH ASENEREHIER =R
» AlAbusHE L E"Provided access to share memory”, a set of wires that carries
information from one part of a computer system to another

e Application Programs:

(o]

define the ways in which these resources(¥gf92f#41% %) are used to solve users’
computing problems

e Operating System

(@]

e User

(@]

FiASERR EosB{E B FERE (M NN AP (a], fthel LAY=HIREME, H oo T N AR EEAIER: M
OSHIERIZMITUser programi[E 1R e]gEiLproblem easier

RIMVEREX : operating system is the one program running at all times on the
computer—usually called the kernel.

EEE—RAPITENERS: Inthis case, the operating system is designed mostly for
ease of use, with some attention paid to performance and none paid to resource
utilization—how various hardware and software resources are shared.
EEZAPNITENRS: The operating system in such cases is designed to maximize
resource utilization— to assure that all available CPU time, memory, and 1/0 are
used efficiently and that no individual user takes more than her fair share.
EXNZAFPBAREIESMTENZRS: Instill other cases, users sit at workstations connected
to networks of other workstations and servers. These users have dedicated resources at

their disposal, but they also share resources such as networking and servers—file,
compute, and print servers. Therefore, their operating system is designed to
compromise between individual usability and resource utilization.

BEhF T8 : Because of power, speed, and interface limitations, they perform
relatively few remote operations. Their operating systems are designed mostly for
individual usability, but performance per unit of battery life is important as well.
BRAZREIRENITENRS: For example, embedded computers in home devices and
automobiles may have numeric keypads and may turn indicator lights on or off to show
status, but they and their operating systems are designed primarily to run without user
intervention

ENMEEENAF

Memory Unit

e Memory UnitX VNI Z I8z & rIMemory

o CPURAMMemoryHisiTiE<, FIAFIENREFHEEWEFEMemoryd, EIBESF, memory
XN
o RAM, random-access memory, XX #EFRAImMain memory, ZErewriteablefd
o ROM, read-only memory, X "memoryEEMNRAZ NP LMRNZER, FRNBEEZFENZER
#R = static program
o CPUZNfaI5memoryxRX g :

0 1load : Theload instruction moves a word from main memory to an internal register
within the CPUAmain memoryiB RFEFE A\ cpufiregisters
o store IERBMcpubiregistersi#g Amain memoryH
o WEREGITHALRERNIME, cpumBiBIE<L MAmain memoryHinE#registerd
o BRHITIESMINFEinstruction execution cycle
e XFMemory unit3Rix, MMEEFZIFIRBEmemory addressiIiRzsh

e XFmain memory3kii, B IMEHGHEIM: TEXNTEEEFEMENEZFRNSE, MNELMEES
FRAEURER X Z FERE%, EXFRIIR T, secondary storage (#magnetic disk) AT,
XFfstorage] MK R fEFAEEIRNIZ

o FTAAKE D HIFR R SEhn LR MEF T diskhay, EEMhIMERINZ #nE ¥ main memoryH
o Many programs then use the disk as both the source and the destination of their
processing
e = Amain memory, registerfldisk R 2F ZFEImemory unithi—MmME, AZEDHstorage
system#BE M T HEX5Khierachy (1R#Espeed and cost) HIE

‘ registers [j

o i
[\V4
cache

Y ||

L vV
main memory

£ [l

i Vv
electronic disk

£H I

[l V

magnetic disk

f

|
| —

optical disk

f

|
il Vv

magnetic tapes

o #_EEMIHcost more but faster, #fETE: cost per bit FFE{ERaccess times EF

o magnetic tape and semiconductor memory (¥5K) LSRR BEEFINEE AR
semiconductor3& A

o the storage systems above the electronic disk are volatile, electornic diskE%a] BAZvolatile
AR ZE, ME FEMFIEBZnonvolatilefy T

e Uniform Memory Access & Non-uniform memory access

o UMA: S FZAMERALKIE, FNERM T IESEFKaccess main memory R EHZR Fa Fi AT 8]
o E3:
o NUMA: EiIZRBX, memoryIIBELEI S8 accessiRENE, XEERIEM 7RI TEE

CPU Unit (Processor) *

® is complex electronic circuit designed to execute machine instructions at a very high speed.
o HRZMAEMregister

o General purpose registers

o Index registers

o Segment registers

o State registers

o Other registers

= MDR (Memory Data Register)
= MBR (Memory Buffer Register)
® Processor Instruction Set (ppt EERI A EZEXTR)

Single and Multiple-processors System

® Single-processor system

o If there is only one general-purpose CPU, then the system is a single-processor
system.

o There is one main CPU capable of executing a general-purpose instruction set, including
instructions from user processes.

o {BREN, EE&special-purpose processors, Xprocessorsd] g BREIFEiPZFALIE
#%, Lbalidisk, keyboardlEHY, iﬁbspeoal purpose processorsFA=iaiTuser
processes, —fR REEZMOSIERNIES

m tEA0: For example, a disk-controller microprocessor receives a sequence of requests
fromthe main CPU and implements its own disk queue and scheduling algorithm.
= PCs contain a microprocessor in the keyboard to convert the keystrokes into codes to
be sent to the CPU.
o EEBRINIR, special-purpose processorZiRTEBEMANIRE LRI, OSTARIRMHATRE, X
Lo dfprocessora BRI IIE

e Multiprocessor System
o Two types of multiprocessor system
= AMP(Asymmetric Multiprocessing)

m Each processor is assigned a specific task, HHFE—""master processorZ
control the slave processor, system¥ AR —4F
= SMP(Symmetric MultiProcessing)

CPU, CPU;, CPU,
registers registers registers
cache cache cache
memory

m Each processor performs all tasks within the operating system

n HPAIEREE R peerMIEMBIIRR, XAFLIEFZAVIFAET : #HIZ P A E RS H

17, MREBNTcpu, FBANTHIZR] DA B FHT
» BEEREGEIFFERNIERERIVD, FlosESRIRIF
o th#EFRAParallel System 5 Tightly coupled system, have two or more processors in close
communication, sharing the computer bus and sometimes the clock, memory, and
peripheral devices.
o FBH=MA:
1. Increased thrughput (1BiN&EITE) @ EBRREN, AAZNIEEIFREZNIE (BT
HISZOESR 2 BIERIBAERIR) , FRMFHEN TR H AT URENERERE
2. Economy of scale: LE#2EBAMEZRRS, ZAEZREHEZ—"Memory, XHEEFRITEEFAIK
SR
3. Increased Reliability: EXHEZ4#EE, FRUAMIR TIFREIER D ECAYIE, BMEHEP—
WIBFHEE T, BAESHTERIR
w EAIRAE T IEEE, — MBS T, AR TESEARSBEMIERHRR ST
BoEER THLIESES, XEFNEAREFRHgraceful degradation, SEXTH BRI
RNU{fault tolerant, "can suffer a failure of any single component and still
continue operation”,
o HEUhpEMRRER: SISO BAM A cpUIIT, HES KBRS
R, MRERA—HANE, RBAE—TcpublB T, AP cpuf=EL, X
TELBE T —XcpuEMIT
o BIZREH (SPMEPEWE—NchipL) LB IERLBBEEERERS, HERANERS, T
HE—MMIF

CPU coreg CPU core;
registers registers
cache cache
memory

e (lustered System

(o]

(¢]

that clustered computers share storage and are closely linked via a local-area network
(LAN) (as described in Section 1.10) or a faster interconnect, such as InfiniBand. i B Jh#Y

B R STET A 455 1
e ffthigh-availability service: BME— 1B MTENARIB T, RBJDARHIT

#R{fthigh-performance computing environment, X##ZRARIITERES tEsingle/multiple
processorRFt#HER, ANMAINENEZ MTEINAREIT—TER

» Parallelization@—M<LIEFBEWREN XMIZITHREAIFZAR . which consists of dividing a
program into separate components that run in parallel on individual computers in the
cluster

asymetric clustering®

symmetric mode*
parallel cluster*
distributed lock manager*

storage-area networks*

® Dblade servers*

Instruction Execution Cycle

e XE—"von neumann architecturefJB NS HITIESHIINF

(@]

EEBOFARYE ppt

. Fetches an instruction from memory and stores that instruction in the instruction register

The instruction is then decoded and may cause operands to be fetched from memory and
stored in some internal register

Instruction on the operands being executed

The result may be stored back in memory

Instruction Execution Cycle

The processing of each program instruction goes through three main
phases: FETCH, DECODE, & EXECUTE
© FETCH: Getting program’s next instruction from memory.

1.1. Get instruction address from IP, place it in the MAR and send a
read-request to RAM to retrieve the content of [MAR].

1.2. After access time, the content is placed on the MBR.

1.3. Store the instruction code in CIR.
@ DECODE: Instruction decoding and operands fetching.

2.1. The CU decodes and transforms the instruction into a sequence

of elementary operations.
2.2. If the instruction requires operands from memory, the CPU gets

them in the MBR after issuing a fetch operand operation.

2.3. The operand is stored in one of the general purpose register and
the IP is updated.

© EXECUTE: Instruction execution
3.1. The ALU executes the instruction.
3.2. The state register is updated.
Instructions could be:
e Data transfer: from and to memory or between registers.

e.g., Mov Ax, [0x52F3] or Mov Ax, Bx
@ Arithmetic operation: Addition, subtraction, division, and
multiplication.

e.g., Div Ax, Cx or Add Ax, Bx
@ Logical operation: AND, OR, NOT, and comparison.

e.g., Cmp Ax, 0x0001 or XOR Ax, Ax
@ Sequence control: Branch and tests.

e.g., Je Xor jmp X
A A4 FTEEI/O structure pg12*
Lecture 03 & Lecture 04 & Lecture 05

Processes (i#72)

® {t/AZprocess?
o MAEMBMAZNMUBNERARSA—1F: BLNERRARIAATF—MERIET, MINEN
BRAZATZ T REFEDSIEIT, #HIEFEESRE" a program in execution”, a process is the
unit of work in a modern time-sharing system

o processHIf2FEHIX 7]

s FEFRE—Tpassive entity, ME—TEFEME LTNEERESHXXEME
® Processi@—"active entity, 27E/EENERI, with a program counter specifying the
next instruction to execute and a set of associated resources, HfizF#Zload#memory
PR, e, HREFEETHRMERE, XTMEFRMTMR T — e
® processEEBT4A

o An address space (containing the program code and data)

= static

= heap, is memory thatis dynamically allocated during process run time
m stack, which contains temporary data (such as function parameters, return
addresses, and local variables)
m data section: global variables
o The cpu state: The value of cpu registers including pc and sp

o A set of os resources: open files, network connections,...

o ??A lifetime: created-executed-[interrupted-resumed]-terminated
o Bt AaThEM#HE:

1. operating system processes executing system code

m executed in kernel mode (master mode)
2. user processes executing user code

m executed in user mode (slave mode)

o BMERAEB—TREFTENHMNARE, BETER R

® Process state

Process

Process

created i
switched Running
=
=
o 5
o5
Process Process > 3
dispatched 53
1/0
L/Ulllpleli()”
_________ Process Process = _Process| . Process Process
suspended resumed
S
=S
[
=
o3
S o
<

o FEXKEZHIT — P itiEaefAMstate

= New: The process is being created

= Ready: Having all needed resources, The process is waiting to be assigned to a
processor

= Running: Instruction are being executed

m Blocked: Waiting(blocked queue) for another process to terminate or an event to
happen(e.g. signal reception)

= Suspended: Swapped out of RAM for some reason(E{&#reason&ppt)

= Terminated: The process has finished execution or has been killed

® Process IDentifier (PID) : During the lifetime of a process, it's identified by a
unique(temporary) number called PID

® Zombie process, it is a process which has terminated (executed exit()), however, its parent
process has not yet executed the wait() system call to receive the notification about the
termination of its child. It is like the process has terminated (dead) but it still has an existance
entry in the system as long as the parent has not yet executed wait() or terminated (in a
nutshell, the process is dead but still alive).

PCB(Process Context Blocks)

o XNMARAFENENZ—EFMUEinterruptZ/FEIR, BERH#IZ

o EIRMEARZAR, BT HIEEHPCB (Proces control blocks) F{{ER, XM th#EFRtask control
block

process state

process number

program counter

registers

memory limits

list of open files

FAER—TPCB, EEESNEDHIZ:

(e]

(e]

Process state: iIX“>processfilast state? ? BREIFTFHstate

Program counter: The counter indicates the address of the next instruction to be executed
for this process

Registers: (BRI XNHIZ(FERMregister, F EmEMprogram counter—#%, WRFinterrupt
HINANIE, X registerMpcAENDNERRIF TR EMinterrupt[Elsk 2 f5R] LAY EER TR
NIEYHE<S

CPU-scheduling information: & 7 process priority, pointers to scheduling queues,

and any other scheduling parameters

Memory-management information: This information may include such information as the
value of the base and limit registers, the page tables, or the segment tables*, depending
on the memory system used by the operating system (Chapter 7).

Accounting information: M@ X T X TN#HESA T Z D cpulEIRIN, AT ZKEHENE, PID
I/0 status information: fi#fz Tt AI/OIREMWER T, FTHTHAXMG

o TEIRBI—IKE, rIUNERITREMIprocessesiIPCBER SR AETFFEProcess Tablerr

Process Table

PID PCB
1 -
2 . Process Control Block
: : Program counter
n L -
Process Contrel Block Registers
= State
Fln:v;.;ram counter Priority
Process Control Block s:ag:t"s Address space
Program counter — Open files
- Priority :
egisters :
State Address space Other flags
Open files
Priority :
el Other flags
Open files
Other flags

o B{ARN—LMRIE LRKRIEElab_T

e Concurrent Process:

o HEZ M IEF#HlIoad#Hmain memoryfIit iR, thEiEE Z PHEZERNHATIIEME, X PBHEM]
IE1TE 4= paralleld & Zfake-parallel? ?

o fIIHATHIRIEIREEMN, —RMITEAREsequential (serial) si&E Eparallel#y
o Process Precedence Graph (PPG) : FX#RIE R IARTHIZHINIT

ParBegin

e B |
1
1
1
!
1
1
1
1

9
1
1
1
1
1
1
1

ParEnd
Pn

- e e oo
- e -

End

Processes Precedence Graph (Left) and its pseudocode (Right)
o HUMTSZHELZE, HEZEMAINEGE, MNNSFEFTFZSNER, BifEppt

® Process Scheduling/Scheduler*

Interrupt

e is an event that alters the sequence of instructions executed by the CPU BZECPURERYE1TIRF

o From Hardware (Hardware-based) :

m Hardware may trigger an interrupt at any time by sending a signal to the CPU, usually
by way of the system bus.
o From Software(Software-based):

= Software may trigger an interrupt by executing a special operation called a system call
(also called a monitor call).

= Exceptions: An exception happens when the current instruction perform an
illegal action such as division by 0

= System calls: User program are executed in user mode. This program doesn't
have any access to peripheral(4ME), Fit BUX#F F 12T b Eissue— T system call
E5&interrupt

® {tsEsystem call; System calls provide an interface to the servicesmade
available by an operating system

» BIIAFAEEsystem call? : —MilF: HENE—1TEREM—TXHIEE
FEEFEIERS — SRR, BITNREFELATENE —Ninputh AR
MNXENRT, BT UEEGuser, HEAE—IREXNERAT, BEHXD
EFEEERS LErmessageiBRIAXGR", RERESREN(FERINEMM
B userERE PR, XE2EFEsystem callR5EK

= {+/4 APl (Application Program Interface) : The API specifies a set of
functions that are available to an application programmer, including the
parameters that are passed to each function and the return values the
programmer can expect

user application

open ()
user
mode
system call interface
kernel
mode A
> | open ()

Implementation
i » of open ()
system call

return
w EANR HEAMERWIN3289R % createProcess () BIRTE, 1R L=E
£ NTCreateProcess () Fsystem call
» BARNTLEERAPINIES T AR EEMSsystem calllg?

s HAEAENRAEARERSsystem call, FAAPIESAIMAEREARERT
{BYEF1EREAIsystem call

= EIFAYsystem calltbapitFa
= System callg9Fhk:

Process Control

File management

Device Manipulation
Information Maintenance

A

Communication
6. Protection
o Inter-processor interrupts

o Spurious Interrupts
e {tAZInterrupt storm: FEZHosiEWEIT KZ#IMhardwared kiinterrupt, S handlerizfT X
KAEJE, BBAXTosHiE TR EH

o TEREMMinterrupt, CPUERRIREIT 2EHED LELBERIMENIE, HREHESHIITRIERE
BIBR— 1 EENME., X MIBFFEEService Routine, XN Interrupt Service Routine(a low
level program (assembly)that is executed in kernel mode to service the cause of the interrupt)&

W17, RITR T Z/E, CPUREIEIXMNinterruptZ BINMATRIMUE, FTERTHNEGITH—NIRF

CPU user
process
executing

I/O interrupt I—l
processing

I/0 idle
device

transferring

I/O0 transfer /O transfer
request done request done

e Interrupt@ B AIEIZH| %% Rinterrupt service routine?

o Invoke a generic routine to examine the interrupt information
o #REXMroutineIRIFEXNinterrupt informationZcall B {R#interrupt handler
o Interrupt/EAfRiEhandlefiEE? (Interrupt Vector Table)

o FEAinterrupt@H AR ATLE, FrA—table of pointer to interrupt routine can be used
o EHTinterruptfitiR, SEIEHFIXMInterrupt Vector TablefA5 MEREIFRMpointerdB
JLEBE AR interrupt service routine
o X/ table—f%7F7Elow memory(the first hundred or so location), T#EX " MtableE@E, &1
& &Minterrupt routinefF IS RA F— T EKRMIE
e Interrupt/B AL ZBIETENER?

o ATERZENEITHRER, WIlBinterruptZ BIRIHITAIHBIHARF TR, URIAIRIT—RRZ2IE
interrupt Z BIAYHEIE A — T BN E, BRUERNIRITE ZH)Estore the return address

on the system stack

o After the interrupt is serviced, the saved return address is loaded into the program counter
(Lecture 02F]I4$%Z!), and the interrupted computation resumes as though the interrupt
had not occurred.

o WNMFEHEHRERT. EAREZE. Bins....) RN ERETITHER?

o Polling*: RERRTEERES MEHE B new informationE R Zavailable ((simple but high
latency and CPU cycle wasting)

o Interrupts: i&&MEInterrupt controller &5 Mfi5|#2attention, CPUMA#FEEAL B device
request, interruptZ/iXcpuZcpufliTroutine Z [B]HIRYE)[EIFE#EFR Ainterrupt latency

n UE-MESHITRZE, cpuBieiEinterrupt controllerkBE A& Ainterrupt, MR
BHE, BBAMERHEIERE S suspended”, HB#1Thandler
e Interrupt Handlers =~ Processes

Context Switching

o {+42context?

o HinterruptHHIRIAT{E, the system needs to save the current context of the process
running on the cpu so that it can restore that context when the handler is done. FfIXX
contextifiE—LEX T HEIMprocessiIER, FBEILXL(SZ IR (state save to the process
PCB) TR M E (state restore)iX/>process

e contextBEBMTARAE?

the value of the cpu registers

the process state

memory-management information

M EMNRBAMER T ARNERTNSZEPCB

e Context switch (XPMENRAZHEMHARZZ BRVEIR, MARhandlerfl#iZZ(E]) : Switching
the cpu to another processzi & A ILIAA 2 A THR1E:

1. state save of the current process(save the context of current process into its PCB)
2. state restore of a different process(load the context of the newly scheduled process from
its PCB)
e Context switch (switch between processesHIER)

O O O o

process P, operating system process P,

interrupt or system call

executing J_L /—1

| save state into PCB, |

* idle

|re|oad state from PCB1| 1
ridle interrupt or system call executing

| —~—v

| save state into PCB, |

idle

|reload state from PCBO|

executing]{[‘¥

e Zcontext switchBJRH{&, switchfJRSEAEMZEREN, AANXMERRAZLEZHITEMNIE, —RKRE

few milliseconds

e Interrupt with Context switching (P12IEAEHITE#IZ, P22 T—1Ti#FE, XE—"interruptHi Il
T, REALH)

Assuming that process P; is executing and process P> is the next process
in the ready queue. Then, if an interrupt occurs:

o

(2

o

CPU (hardware) pushes the current PC onto the stack and updates
the PC-register to contain the address of the 15 instruction in the
corresponding interrupt handler.
The interrupt handler starts execution:
e It pushes all remaining registers onto the stack then performs its
specific task.
e It copies all registers values from the stack into PCB1.
o It move PCBL to end of ready/blocked queue, and PCB2 into the head.
o It copies register values from PCB2 into CPU-registers, except the PC
values which get copied to the top of new stack.
The handler executes RTI (ReTurn from Interrupt) which causes the
CPU (hardware) to pop the PC value from the new stack to CPU'’s
PC register.
The CPU then, starts/resumes the execution of process P».

o UTFE— 1 EMEHgenerallER:

Generally, right after an interrupt (hardware or software):

The CPU pushes the PC value into the stack pointed by SP.

The CPU loads the PC register with a new value (@ of the handler).
The handler saves the remaining registers onto the stack.

The handler executes its specific task.

©0 00O

The handler determines whether a context switching is needed or not.

If yes, a context switching is performed. The previously pushed
registers are saved into the PCB (of the interrupted process) and the
CPU is loaded with a new content, except the PC, from a new PCB.

If no, goto 6.
© The handler Executes RTI.
@ The CPU pops back the PC value from the stack pointed by SP.
o Jyft/context switch3dF—time sharing system3EiREE? Fppt
® [nterrupt interrupts interrupt handlers

o WMEEHThandlerfIfHE— TN E SR interruptEIN T, BAIMEEHRITHIhandlerfiSH
interrupted, B2 EAREppt

Lecture 06

Threads

e Thread: A thread is lightweight process. It is an execution flow of a given program. A
programmay have multiple execution flows (multi-threaded program).

e Athread shares with the main process (as well as with other threads from the same process) the
code section, global data section, heap section, as well as the resources such as open files. Yet, it
has a private stack section and private CPU-register values. & 28 F— 12, HEXMHEHAY
RZ2RE, EE2MNAE—1ET B Bprivate stack section and private cpu-register values

o Flprocess—#¥, thread@#XTID (thread identifier) ‘AR FF¥H, FEE—1IRPCB—HRIZEM
o Thread VS Process
s MIRBEZLTENE, ITATERZCRHIZR?
. BREIEFIARZNINMRE S D EE—FBImemory location, HBIEMELIZRFGHD
532, time consuming, resource intensive, FRIAESMHMNERE—TEH
EEEHESZ I L%IE
n HEIEIMHEENENME, ITENSERMANPCB, HAEMHNHESEHIIMemory

location, EIBRILIZRIFTE R EFEFTFIMemory locationd, H Hupdate the
PCB data fields

= MHAIEFNLERENIHE, thRBFHAIMemory location, RAIFXmemory location
FHI R 2fth B H#private stack section and private cpu register values, X3 FHANETH
ENATZEEROITHEERS

e single-threaded process VS multithreaded process

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread ——> ; <«— thread
single-threaded process multithreaded process

o MEKRZEMOs kernels#PEZAIZNT
e advantage of thread:
o responsiveness: BME—TMERBHWIRT, B—TEEMRATURIETIE

o resource sharing:
o economy: AARE—FTEMIIAIMemory space(Because threads share the resources of

the process to which they belong, it is more economical to create and context-switch

threads.)
o scalability: XJZ#Z40E2FEAF]A
o HHIZAERAREMMETZLAENA—KREXEEE

e Thread level:
o User-level thread: supported above the kernel and are managed without kernel support
o Kernel-level thread: supported and managed directly by the operating system
o 7E&Iuser threadflkernel threadBFHER =& M AYEHRY

= Many to one:

S

<«—— kernel thread

. PP AEEREI—Tkerneli#i2, RASRXRE—Tuser threadr]accessE|—
“Tkernel thread, FILAESEPR_ EAAAEZZAM B2 HFITIE
= One toone:

<«—— user thread

N
® 0 & b

= {Rstraight forward: XTHMBETERINEENS SLEESTERI ETHE, B
LB IIELAE: BRIE—Duser thread L TFEE M EIE—Tkernel thread,
BlEkernel thread @ &X172 AR IS A2 IMAY

n linuxFIREREVIRIER RE BT 7 XFFHIRTU

= Many to many:

34— user thread

<«——Kernel thread

= IEMPuser threadFIN“Nkernel threadfBICEEsuch thatN < M
s XTERAMBRFEE, BAuserfl USIZMAMHEENHNENLTE, HEERNRIAS
WARKRF M, HEHEA AT SRR FEFTIET

DMA

Lecture 07 & Lecture 08 & Lecture 09

Introduce the critical section problem and process synchronization

o #HiZ/&F2 Z[BIWIRshare@—~datafyiE] gEEFKdata inconsistency, XEEZEHHIZvarious
mechanism to ensure the orderly execution of cooperating processes that share a logical
address space

e H—R5|Kkrace conditionfI{TAMATHIEME, MMAVSEREUVAT:

The logic of your program
Depends on which thread is started first.
Depends on which thread has the higher priority
o Depends on the hardware, each thread is running on one CPU core
o RftAsHIl shared data corruption”:

O O O

o Processes can execute in (fake) concurrency i.e., any process can be interrupted at any
point in its instruction flow (e.g.,quantum expires or I/O operation), and the CPU is assigned
to another process.

o Processes can execute in (real concurrency) parallel (e.g., two instruction flows of two
different processes are simultaneously executing on separate processing cores).

o These concurrent or parallel processes are sharing some data.

o The concurrent or parallel execution of multiple processes may result in the
corruption of shared data by among several processes.

e race condition: where several processes access and manipulate the same data concurrently
and the outcome of the execution depends on the particular order in which the access takes
place, is called a race condition. Z M #ZEIRTEVS FELZEE— MR, MIXEIEAYSREL LR NNIEUR
T PRI TR HARRENM RO . A TRIERRERXMINR, FERIESRRE —MHEATUREZX
—%44E To make such a guarantee, we require that the processes be synchronized in some
way. ffiAsynchronizationfi@— MRIESRXRE — i ME— T sharedZEE/9H1H

o pptErIER (P —E—HRA~dparaphraseT—TF)
1. Multiple processes are being executed
2. These processes share at least a common variable

3. The outcome of the execution depends on the order in which the processes modified
the shared variable

Definition

Process Synchronization: It is a multiprocessing concept that aims to
manage and control the execution and the access to shared resources
between multiple processes or threads.

Important when the order of execution matters.

()
@ Allows transparent process communication.
@ Preserve data integrity (coherency).

()

Mechanisms such as: Mutex, Semaphores, Monitors, Peterson's
solution, and Messages can be used for process synchronization.

e ppt LT LN synchronization with booleanf9f5lF
e the critical section problem:

o Assumed such system existed: The system consisting of n processes { Py, P,...,P,_1}.
Each processes has a segment of code called Critical Section, critical sectionE2EHIRIBS
FHEBIFEENRZ common variable, update a table, writing a fileZ%%, EXMNASER,
REENFIER: S—MABEIET B Sicritical sectionfIBHE, HfthFl TAIFRB HZE A
AIIiE1T (B Hcritical section) : no two processes are executing in their critical
sections at the same time

» Critical sectionfJ41/EE X Zpart of a program code in which the program requests to
use shared resources on which the access is mutually exclusive
= Note: A process might be interrupted during its critical section
o critical section problemZ# Ti&it—"protocol \TI L HIEATMBESIE, B MHEERITH

B 2 hcritical sectionZ Bl ZSTrequest permission, XHEFAVIZITHIES N HZFRIRIZEB]
A AIUER D -

1. entry section: 3kEXpermission

2. critical section

3. exit section: the process inform the OS of leaving the critical section to wake up any

waiting processes
4. remaining section

do {

entry section

critical section

exit section

remainder section

} while (TRUE);

» SFXEFEFIRITNREROTETFU T =TEK:
= Mutual exclusion: H—PHEENITEBHcritical sectionfVid{®, HAhAHEZEA
AT AL 1T critical section
= Progress: MIRHHIFHEBHEERTcritical section, FAMAHHALMHIZRIFH
T critical section, REERE L Fremainder sectionfIHFZR AS 5 /A EHEIT
critical section, X TMRERITFEEA A A IEIRA
= Bounded waiting: H—M#RE{EL T # Acritical sectionfUIFREZBEZ BRI EZ
B, FE—TRELREIERHIRINHIZHR B IFETTcritical section
= kernel-mode processesti=Hlgrace conditionfya) @R *

= Preemptive kernels

 XEFRER R TF— T TEkernel modeHATRYHZMZ N T

= Nonpreemptive kernels

» FE@ERIER, “RF, akernel-mode process will run until it exits kernel
mode, blocks, or voluntarily yields control of the CPU

» XEFHISITRI BB R race condition, BN TEkernel EE@& X R AIIEIT—
kernel process

Introduce software and hardware solutions for critical-section problem
Semaphore

® 3 synchronization tool

e Asemaphore Sis an integer variable that, apart from initialization, is accessed only through two
standard atomic operations: wait() and signal(). (S 2SE— NNt E, R T —HFiE#initializeiX
MEFREZI, XERAR#wait()Fsignal()iX - ~atomic operationZgaccess

o Atomic operation: "[EF&fE(atomic operation)@ A FEEsynchronized", XEZ&ZREN
EEBRT . MBRFIRMERBASHREZAENEFTEAVRIE; XMIRME—BFE, Mi—EHi
1TEIEER, RIEINEBET context switch , HBwaitflsignaliz & R F#R1E] LAF{R
semaphore A~ &#ERtaccess?l, WREEM ERTaccessRl, IMEBHBET

wait(S){
while S <= 0

S--;

signal(S) {

S++;

o when one process modifies the semaphore value, no other process can simultaneously
modify that same semaphore value.

o in the case of wait(S), the testing of the integer value of S (S < 0), as well as its possible
modification (S--), must be executed without interruption.

e Counting semaphore

o XMHYERIAE—TRBRHIAVES

o can be used to control access to a given resource consisting of a finite number of instances.
The semaphore is initialized to the number of resources available. th5 2%, ZH—i#
BESHA—IERNME, XMESE (availableZTRHNEE) -1, MAMTRTZE, E5=
+1, UMW, HESE=-0MME, HFNKBEURENR, ﬁﬁWuﬂU“H SSERNONHRETEZHIT

critical section
e Binary semaphore (Mutex Locks)

o {HXKIm<F0-1
o BIEIMINRIRIZZIM critical sectionff BT LA B X FFHEA -

do {
Wait (mutex) ;

// critical section
signal (mutex) ;

// remainder section
} while (TRUE);

o R, H—THEBREFER—IEFENME, XTmutexBIRKKRERIAERINERO, MM
mutex; 209t R, EAhARETiEM Tritical selection, HAABRIFRIHEIESER 7 fhAcritical
sectionZfm, mutexZZ[g]1

e RigRcounting semaphoreifZbinary semaphore, 118917 8%8% 5 &busy waiting, busy
waiting (ILIRFR) EEEEETRERwWhileEH, SEMBANEFSMHMER, MEFSNRER, SiREE
EHBAEERMCpU cycle, Xcpu cycleRGEBAIUERENSRAITFLRIR, XL processTEHFRF
BIRT{Espin"#Isemaphoretb #FR A Spinlock, MR ETF HARFEE context switch, while context
switchiREARIRZRAT(E)

e Mutex#{IBinary Semaphoref9/X%): Binary semaphorefUfREE X 2EEMO0-1HZBNESE, B
EMutex lockIEXEB—TERH!, MERNEDBAZIULATMESAE—TERNERER, EREE
X ERBEEHN, ANERNEENZERNERN: HAEXTERS, FIUKARIUA, RgF,
MIREERLIR TR 6ER: MESEEENERREE, F7E#H \critical sectionZFl, okIIE(E
SER10, BETNIARR, KET—, ESENMRIRERTI, MIEEE, JMENRE, R
FTONT, BhfbEqueueF—%, HEAEHN T —TRBNZRAERN: FSEZEMT-1. X
ERUESERAARIEX LK,

o H3FSpinlock#9iist :

o HHABWNRBBRMESEANIE (REHIT) MR, ZRIBMER 1L EEEWhilehi#1T
£EHNE; instead of that, MAEERERRAEMRME, XNHERIUEB S 4Ablockig

o HMITTblockiXMEL ZfE, SIEXMEblocki#iEElsemaphorel A —waiting queue
i, AREEFHI&EZIcpu schedulerH BixEIT—1P itz

o E—MHETME (1T TsignaliE?) , HWblockiZHERMEIR (wakeup()) , RAE
XM blockigEfstate2 T Fiready state

o Note: (The CPU may or may not be switched from the running process to the newly ready
process, depending on the CPU-scheduling algorithm.)

o FERMIER TRIEX:

typedef struct{

int value;

struct process *list; /*When a process must wait on a semaphore, it is
added to the list of processes.*/

}semaphore;

wait (semaphore *S) {
S->value--;
if (S->value < 0) {
add this process to S->1list;
block();

}
/*BFER, MREHEHBEFHITHORER, THENRREN, BAXTHELZKERES
£-1, “-1"ARTHIAE—THEESFS/

signal (semaphore *S) {

S->value++;

if (S->value <= 0) {
remove a process P from S->1list;
wakeup (P) ;
}
/R, signalRGHRESE+L, XFEFE, RAMELTH TXHXITHEIRER, BE,
MREEGAIIRFESWEblock T EEFGIHE, XTHARBAELEXMNHERTT, BR
AT E LB HIZRFEINERIK ", BATSHITIESFSGAIIFEFENHARZMEEAVIRIE, XM
BNENT XD FEFFNTIREHE, MRSBESFGIIERBEERXIMRIFNHE, MTRE
FEEGINER BARX T RIRNHRE, thEINESEMRATKT0, At REERBMANFRIA
5l =/
}

o XMEBiEXFBinary Semaphore—##&EH:
A binary semaphore is a semaphore which value can be 0 or 1.

@ acquire(s) nullifies the value of s and place all other processes to
the waiting queue q (semaphore queue of PCBs).

@ release(s) makes the critical section available by setting the value
of s to one or releasing a “blocked” process from the queue.

acquire(s) release(s)
{ {
if(s==1) s = 0; if(q is) s = 1;
Else Else
Block & place P in q; Wake up P from q;

} }

@ Each process, once dequeued and resumed will start executing its
critical section.
o MAEXBEXTZE, EEEMENM (XFcounting semaphore) Kix, RANENEES
FHRRENEE, sNE2RENThis fact results from switching the order of the decrement
and the test in the implementation of the wait() operation

o BMESE (EXEXEM) #FHE—integer value, and a pointer to a list of PCBs, A
FIFO (firstin first out) BJqueuer]AimplementiXfilist (FoHEANSZFXIHEHITLHENESR
X) (2AEILLEIRATAEany queueing strategy)

o wait()Flsignal() i IRE Zatomic operationh FURIEZ B M i#FE 0] AR AT wait () F
signal()

= For single-processor:

= fEwaitslEsignal ITHORME, BinterrupthIHINLAHEIE: once interrupts are
inhibited, instructions from different processes cannot be interleaved
= For multiprocessor:

= interrupts must be disabled on every processor, TARIIE, TEAEMLNIESE i
1TRHTZE] BERinterleave
o IRA229M T At 4ABMERXFIRITHBETIEMRERIT IR ET
e Deadlocks:

o The implementation of a semaphore with a waiting queue may result in a situation where
two or more processes are waiting indefinitely for an event that can be caused only by one
of the waiting processes. “FFIRE T BIZIR, RERIZTREE"

o fINEET, RIRBPIMP2AMT#HE, HEEANBRITRIR, MEPTIFHAFHBRIR, MP21HH
BEHARIR, MITHF/A—THRMASRRER, MXFLREFTH, XMEZAED, Xt
EFEUR—TER, DI TIEX, WR—AHEBEFE—THEHESFENEZAH#ERNE
AR eS| REVEH, IBAXBHIZZITEMAT.

" REAIIBHREFSEIED: M LEIM, BEFETENHNATRERER

» BEIHERRSEEIEH: thRiEassignmnetFBFIEH, AMBAEE, BACKHR, CM
ARHE, TE8T

 HIEWHINEA LSRN BiHiEpl, p2, BEERFA, B, AEKIUp1IEITA --> p1
BITB --> p2ia{TA --> p2ia{1B, BRIRFHT, pliZ{TARpP2E1IB, HHKEFE—THIE
i, EEBEEIR,

e Starvation:

o Another problem related to deadlocks is indefinite blocking, or starvation, a situation in
which processes wait indefinitely within the semaphore. Indefinite blocking may occur if we
remove processes from the list associated with a semaphore in LIFO (last-in, first-out)
order.

o RXEARLHEVRT HECHIZRIRIT, MRS HHRIIRITERBE AT, BLAHEMEIE—E
EREIFEEcritical sectionfIEAN, ME"IE", HINHBI—ERE, HAERBR FHESKINE
A BBLIRE X IR, XX T HRRAR A HIE

Peterson's Algorithm

e ZHEFZF/atomic operation
e #%yE: there are no guarantees that Peterson’s solution will work correctly on such architectures

e context: X AfYsolutioniB)4/ NEI TN #TE: P, and P;, FHrequire the two processes
to share two data item: int turn; boolean flag[2];

o The variable turn indicates whose turn it is to enter its critical section. That is, if turn ==,
then process Pi is allowed to execute in its critical section. The flag array is used to indicate
if a process is ready to enter its critical section. For example, if flagli] is true, this value
indicates that Pi is ready to enter its critical section.

do {

flag[i] = TRUE;
turn = j;
while (flaglj] && turn == j);

critical section

flag[i] = FALSE;

remainder section
} while (TRUE);

o thFiZiR, S THNHERIERSMfagiztrue, X TEEEEreadyfmﬁcrltlcalselectlonE’] 8
2 ERMBIEtuIZERNj, IMERNRIN|treadyT, BAJRTIETT, élJLﬁm:Tflag[J]
false, tWFELLRS, iRB1THE M critical selection, B1758 T Z/aflaglilaZ Mifalse, }g‘F;"vET}L%E 3

i, —E—HIE, BEXTEEIEFEbusy waitingfy
e JFRR*

Hardware solutions for Critical section

o FIRRIXIEEIRY, ﬁRPeterson XFfsoftware based solutionsHABEMRIE—E BEWEIMAAIITEN L
HEETE., AEIRERAME, BMNBAIURBMNWEEE: BEAR EE2EMcritical-section problem#p

EE—"Mlock

do {

critical section

remainder section
} while (TRUE);

— NHFETERF A\ critical section Z BIERIATNFTIRF X Mock, FREfMIcritical sectionZE5R 2 57 AT LA

releaseiXMock

e Preventinterrupts from occurring while a shared variable was being modified:

o XJFuniprocessor environment3gi%k, XiFFHIENEEZRNREAEE, This is often the
approach taken by nonpreemptive kernels.

o {BEXFmultiprocessor environmentiiE(BE R kinterrupt¥multiprocessorfygZim):
Disabling interrupts on a multiprocessor can be time consuming, as the message is passed
to all the processors. This message passing delays entry into each critical section, and

system efficiency decreases. Also, consider the effect on a system’s clock if the clock is kept
updated by interrupts.
o +AlUf“atomically"? : a unit "atomically" EEMEX2— 1 ERN, EFN"BM, ik,
XNERA, ASEinterruptyTH! |

o XENLEMSatomic operation

boolean TestAndSet (boolean *target) {
boolean rv = *target;
*target = TRUE;
return rv;

}
/BB —TRAEinput T Mitrue, AGreturn FE¥XAinput*/

The important characteristic of this instruction is that it is executed atomically. Thus, if two
TestAndSet() instructions are executed simultaneously (each on a different CPU), they will
be executed sequentially in some arbitrary order

do{
while(TestAndSet (&lock))
//critical section
lock = FALSE;
//remainder

}while (TRUE)

void Swap(boolean *a, boolean *b){
boolean temp = *a;
*g = *b;
*b = temp;

}

/ /BB N booleanTERIRUE

do {
key = TRUE;
while (key == TRUE)
Swlap (&lock, &key);

// critical section
lock = FALSE;

// remainder section
} while (TRUE);

AT ock, HEIMIMT —MalseZE, HiBlockiyfalsefI{ERMkeyik, Xi¥lockZER
true, BIAIARETIT, keyZhifalse, AKETIT

o LEMENEHEHE bound waitingiXM&HE", TEMNZEHEMN

boolean waiting([n];
boolean lock;

do {
waiting[i] = TRUE;
key = TRUE;

while (waiting[i] && key)
key = TestAndSet (&lock) ;
waiting[i] = FALSE;

// critical section

j= @G +1) % n;
while ((j '= i) && !'waiting[j])
j=@G+ 1 %n;

if (j == 1)
lock = FALSE;
else

waiting[j] = FALSE;

// remainder section
} while (TRUE);

= HELEN, HEITHMR, KR TXMNHERE, RAESHwaiting[ilfkeyETrueAIBHE, il
EHAFNEITE, SHNERD, BHPENMEKNElockiX™ME, HlockEfalsezfa, W
ATESTMUNT, BrEHELE, MTEREHKIRENfalse, FiaH Tcritical section,
waitiXMarrayF ReBE—MES ZEfalse, XRIUL T mutually exclusive

= To prove that the bounded-waiting requirement is met, we note that, when a process
leaves its critical section, it scans the array waiting in the cyclic ordering (i + 1,i + 2, ...,
n-1,0,..,1i-1). It designates the first process in this ordering that is in the entry
section (waiting[j] == true) as the next one to enter the critical section. Any process
waiting to enter its critical section will thus do so within n - 1 turnsth i 2 iR BB A
IFiFF 16 E—N A Rwaiting[j] =true & X A9#HTEH B B ilock

» AT AEREIFjRequality?
Examine some well-know classical process synchronization problems

e The bounded-buffer problem

o BAEXZEM4, BERBEHE—shared memory systemiIERZ: two or more processes
agree to remove the restriction for preventing one process from accessing another

process. # H#HEERNAIZZBASER—IZIMEHZIE—Tshared variable

o buffer: ENE—1EF:E, ERIIEMTHAREBENIET, DABE—THERANEFSR
XM EFRLEERD #&%B—JLXEJ"' Ay— ik R

= unbounded buffer: &E{Z&—M, WIMZREXTEFRSIRBANREIN: “consumer
AIBEEEFMitem, {BREproducerAla] BURREAMAIIE R AN EFZH"

= bounded buffer: EEFH{N—M, XNEFHRZBREA, ZHIRBERANIE, consumer

—EEE, HEREH 7 RAEENRME, fERproducertt b NEBEFXTEENART T Z
EBAEFRAFERHE
o FRIRINE:

» £ E—NhEnNbuffer, FHEE M bufferdfal I F—f&item, mutex semaphore
provides mutual exclusion for access to the buffer pool and is initialized to the value 1.
The empty and full semaphores count the number of empty(initialized to the value n)
and full buffers(initialized to value 0).

//producer

do {
//produce an item in nextp
wait (empty);
wait (mutex);
//add nextp to buffer
signal (mutex);
signal(full);

}while (TRUE)

//consumer

do {
wait (full);//;8 BB ROAMbuf fer MIEIREEMTAKRA
wait(mutex);//RlMHBRESENEREZMHAER
//remove an item form buffer to nextc
signal (mutex);
signal (empty) ;

//consume item in nextc

® The Readers-Writers Problem

o BMESRENEE: XEEANTRB TS T HIZEME—THE, ERFSTHEERE—
PMEENRERANX AR ST HZELE TR, EARBRATRITALBRERS

o Require that the writers have exclusive access to the shared database while writing to the
database

o The simplest one: [RIF— 1B NHIZEL AN T W E TN HZRZRAVIZES], AATEEILIZENHZ
%15, No reader should wait for other readers to finish simply because a writer is waiting,
EER, S—TEAEREFENME, RRNHERSEAN XN NHERZREANMIE LEFHAN

= BRRANEXM, B%, SERERARSIZUNTNES

semaphore mutex, wrt;

mutex = 1; wrt = 1;

/1B ZBINEMBEIF—1F, X TmutexiVESEMERKMRnutual exclusivefl, FFIA
EXTHE—NERAEXLEEreadcount XML EFFHAANR, {Rifmutually exclusive

/ IwrtB—"tawriter#fEMnutually exclusivefIfESE, RAHFMNXMESEHLSNE
— PHEANAR TR E— B FAIZEHIZFTARSS

int readcount;

readcount = 0;
/ /1 Z M readcount NEEZARICE BAIA 2/ MEEUARR T IZEUX M REERY

/ /X @—"Mwriter process
do {

wait(wrt);

//writing is performed

signal(wrt);
}while(TRUE) ;

/ /1 XZ—"reader process

//BRER, HRE—MZEHEH#AR T XENE, SIEEA#ELENT, ARBCER
TIEEES, RBCR&ERE—THITIERESH, BAMSsignal (wrt) , MMMIEEA#H
AT

//Note that, if a writer is in the critical section and n readers are
waiting, //then one reader is queued on wrt, and n — 1 readers are
queued on mutex.
do {
wait (mutex);
readcount++;
if (readcount == 1)
wait(wrt);
signal (mutex);
//reading is performed
wait (mutex);
readcount --;
if (readcount == 0)
signal (wrt);
signal (mutex);
}while(TRUE) ;

n H—NEANHREBERZE, AJRESMEREESFMEZEHESEEENHERE, B
SERFEFNH N HIETTEHschdulerERE
o Thesecond one: RE—1"EANH#IBERT T, BBAREMZEAETNFEG, EAHESR

FIBEIREYTT A
o FENBNXMMA—FNIER, HRAURSSHINEDE, BEARBEAREHIAE, EARE
BUARE#HAE

o EMNEAM+HT 2, METXMERHEEELZ M generalizeE|reader-writer lock

= When a process wishes only to read shared data, it requests the reader-writer lock in
read mode; a process wishing to modify the shared data must request the lock in
write mode.
o —MRIMZEREUTIIR:
» BPHBRRSEENX D BOIREHTENE A #HIE
» EEARENHNERSZSTEAME
e The Dining-Philosopher ProblemT 35 # & a]

o — é?tﬁﬂ/*ﬁ#‘%, OEREFNAASEENHE, BENHENERNRHT, £LR
ﬁﬁ B, BEENRER, —TMEEXXFTEANEEALNAONRFFEHEE., SEER
L%S‘EE‘EZF, BEREZD LR TFRNSTRF . WRATEZREIIE, ﬂE‘Jaﬁﬁ_EE
LT, BAMSPBATROFSFALNHEFEFR, FEH

o EARXMuBLIFEENER, MELEATRFENHINCHE—TMESE, BAEZRERH
FZEERFEwait, HMMATRFZEEMFHsignal, IRBXMERE, ATMEZERZEDEN

TEER:

semaphore chopstick[5];

do {
wait (chopstick[i]);
wait(chopstick[(i + 1)%5]);
//eat
signal (chopstick[i]);
signal(chopstick[(i + 1)%5]);
//think

XEFIIZIT REERIPESIA TN EERARENIZR, ERUIRATMEZRENINE, 818
FREEA T LBNTHEF, BATEChopstick BEHFENESES— T FE2EMO, FEHIT!
» B=MERRE:
= Allow at most four philosophers to be sitting simultaneously at the table.
= Allow a philosopher to pick up her chopsticks only if both chopsticks are available
(to do this, she must pick them up in a critical section).
= Use an asymmetric solution; that is, an odd philosopher picks up first her left
chopstick and then her right chopstick, whereas an even philosopher picks up

her right chopstick and then her left chopstick.
o NEEALH, BAXTHNINERTERIEMARIED, TERIEEZFRARE

Lecture 10-Partial

Process Precedence Graph for synchronization

® PPG(Process Precedence Graph) is a directed graph that is used to graphically express the order
on which processes or threads are executed with respect to other processes or threads

*FipadkE
Lecture 12&Lecture 13&Lecture 14&Lecture 15

Deadlock

o SHEHANT —TRIEENFHFEIRNKXE, BAXNHEMZIEM T

o InETENX: Asetof processes is in a deadlocked state when every process in the set is
waiting for an event that can be caused only by another process in the set.

o LTIHMIBEBREIALE, EMEFTE:

whnN =

4.

Mutual Exclusion ({ERE—THRFENHELR)

Hold and wait: —PM#REFEEVD—IRR, FEMESESANHERRER
No preemption: — P EFEA UL S, —PERERATUB BHHFIETEN
Circular Wait: E—1M&&{P, P1,...,P,}F, PassP 1 BuunaR

e System resource-allocation graph

R,

MEER— T BN EIRAIH]

P, — R;:Request edge, #HREP,EARBEHBTEFEFRERER;, XTMEKNedgeH T2 B
EETEE, MEIRRIERRIRIER

R; — P;: Assignment edge, HER; EEWPECL THEDL,, X1 oiNedge2 MEAFNE
JRSE A &

CYCLE: Adirected cycle in a directed graph is a subset of the graph in which the only
repeated are the first and last vertices. iRIEXTENX, AJUEL, XKEWNMRFEcycle, B
BTMRBEBIG—IRFELAINE, BHMAEK, KE—THEERBEE—THESAENZR,
H Bcircular wait, tHHl2iRXKEFEH T

FrEcycleFH HFEIESL:

° °
°

R, °
R,

o MTEMKENT—HFNZ: EFTRIEHE—NAIEEPIZFR2NEIR, PIZFIRINEIR, P2E
FIR3MRR, (BXLZRERIFAATAATR AR EMBEM RN, PR EFE

o TFfEcycle(BARTETEIESHI:
A @

o FINEERMMEREINEE, RAPAFURME CHIR2ER, MMITRIX T cycle

e Handling Deadlock:
o Protocol to prevent/avoid deadlock

= deadlock prevention

n —ZIPEHERERED—T (B FEBREASHIL
= deadlock avoidance
m ZRosEN/MYUENIR: — P HIESHRIBTARR
o Enter a deadlock state, detect it and recover it

o Ignore the problem

o MRIFEHILIM T, HEARBEAE, REMERIM, REAM: KIE, —DHEHEE, SHHED
WHSR, BAIBARER, BEEXE BER, AANXIMERZS AR —FHIARER— /A%fﬂﬁ’]lﬂgﬂ, 18
EEESBLZRIE, EFNERER

Preemption (3£5)
° T@IE(Preemption)%’z:“é‘P\]’f%iﬁ’fmﬁ&IEECPUJ:EFJE’\JH&, R NI RPH AR ESRNHIZNE
, ERENEDINZIEIE SHNHEZRTUMEIZT. REBSNREREER: #ENNERAR
T REMFTRESNHEREFCPUT

Lecture 16 & Lecture 19

e Discuss various ways to manage memory. The memory management algorithms vary from a
primitive bare machine approach to paging and segmentation strategies.

e XFmemory managementiUIAEETZMRAR, RAEE LHXTARFRIEFIZIT TN

o R IEAmMemoryF R FARIATIEER 2@ id typical instruction executation cycle, memory unit R &g
EEFMEMLUE AR, (BANTIARE X LR B AR E RS E RAN

e Word size VS Address size

o byte addressable}gBIE—" it H /\bit, “size of one location is 8 bits”
o address sizet§HI2size of one address, X PMNA U ERITE BHEFT UG Z /M Mocation

Basic Hardware

e Main Memory#lregister#/E Fdirect access storage device, FEAcpun] LAEIEMIXLE ISR B EEET
=8, FIZEIERITRFRE, FHilfetchiinstruction, dataffHMEBEXLIREE@, WR
XEHBERGHAEXLIREER, BLAMBEERITREZAIGEXLELIE, instructionfEahZiX
LR H

o J¥EYRegister:
= FHregistergi{REIE, are generally accessible within one cycle of the CPU clock. Most
CPUs can decode instructions and perform simple operations on register contents at

the rate of one or more operations per clock tick.
o J¥EEYMain Memory:

s {(BEEEmain memoryiTEAR—1F, ERN1EEImMain memoryEE@idtransaction on

the memory bus, X##—RaccessMiFEEZ " cpu cycle, the processor normally needs
to stall, since it does not have the data required to complete the instruction that it is
executing. XM RIBIEBRMNEBITHIEE - FESRA! BEAM? — CACHE!
® Cache: #%&TFcpufImain memoryd[g], this is the remedy(add fast memory between cpu and
main memory) for main memory accessing time. A memory buffer used to accommodate a
speed differential, called a cache, is described in Section 1.8.3.

e Protection of memory space: ZE09 T B IHRERFIRIXX i usertRaccessEl, SEE—Tuseriy
memory# B —user accessFl, RNTMEBHLE, HMTELFERFRESDHEET —MUIINMEEFETIE

o Base register: Holds the smallest legal physical memory address
o Limit register: Specifies the size of the range

= Example: If the base register holds 300040 and the limit register is 120900, then the
program can legally access all addresses from 300040 through 420939 (inclusive).
BaseFLimitAYEXS T B MHIZEE — A2
= X Pregisterf AATAMRIRER LTINS, BMERRABIRMERSB S A MEXAME
o #AfGcpusItuser modeEEHEIregister £ IVE— Kb HITHE, RENEBI—FZEEE
access osE&E £ Al#userfimemorylIE S <X MER#E Aerror

o Having the CPU hardware compare every address generated in user mode with the

registers.
base base + limit
address es es
CPU 4\z/y—>\< y
no no

trap to operating system
monitor—addressing error memory

o {BEXFoskit, EHARSNNR, EEELHEREIAIILEos memoryHluser memory, i5(d]
user memorysg R T iBuser programn##user memoryd

Address Binding ({irilt E i)

® The process may be moved between disk and memory during its execution.
o FEFRHEEEEMaIn memoryH R NaddressHi T, BBAXMaddress@EAFERNIE? XATIRFTE
BN EAL,

® Generally, processes are on the disk that are waiting to be bought into memory for execution
from the input queue, —f%FURTZEIXIFAY: Minput queuedIEIE—"process, loadi#memory,
AEMIT, X process{EAE<Mdata, mEHIX M processZERIVATR, EFEAXTmemory=
#kdeclared available

o FflA—"user programEZHITHIR R, BTEZ I ZERER:

source
program

compiler or compile
assembler time
object
module
other
object
modules
~
linkage
editor
load . load
module time
system
library
loader
dynamically)
loaded
system v N
librar :

Y | In-memory execution
dynamic ST > time (run
linking memory time)

image
J

o SEEBRIERFA N Fuser process#fififfFrEany part of physical memorys, ZA—MTENIEE
— Mtk 200000, {ERuser processesfIEizithit R —EEZ00000, XEEAJIRITRE T user
processgEFA AL

—Duser programfE i EIHWAIT 2B, ZEH 7T ZMMER, addresseREINTRTRAER
&R, fEsource program™, address—fgz tb¥symbolicAd(such as count). A2
compilerfgfER, compiler&bindiXttsymboliciyithiitto relocatable addresses (such as
“14 bytes from the beginning of this module”). The linkage editor or loader will in turn
bind the relocatable addresses to absolute addresses (such as 74014).

o Each binding is a mapping from one address space to another.FilA& /57 7] A{EMA
addressEH XM EFH BT

o C(lassically, the binding of instructions and data to memory addresses can be done at any
step along the way, fiiltEfIA] AE FEJL M EFEE— DM

= Compile time(4&1¥ATHA): If you know at compile time where the process will reside
in memory, then absolute code can be generated. For example, if you know that a
user process will reside starting at location R, then the generated compiler code will
start at that location and extend up from there. If, at some later time, the starting
location changes, then it will be necessary to recompile this code.

= Load time(E A\BTHEA): If it is not known at compile time where the process will
reside in memory, then the compiler must generate relocatable code. In this
case, final binding is delayed until load time. If the starting address changes, we need

only reload the user code to incorporate this changed value.

= Execution time(H1TATHA): If the process can be moved during its execution from
one memory segment to another, then binding must be delayed until run time.
Special hardware must be available for this scheme to work, as will be discussed in
Section 7.1.3. Most general-purpose operating systems use this method.

Logical Versus Physical Address Space

e logical Address(Virtual address): An address generated by the CPU (in the range 0 to max)

o Logical address space: The set of all logical addresses generated by a program (in the
range R + 0 to R + max for a base value R)
® Physical address: An address seen by the memory unit, that is, the one loaded into the memory-
address register of the memory

o Physical address space: the set of all physical addresses corresponding to these logical
addresses
o WRMITFEMAEERFNEATIANNE, FALLETAIogical addressFIphysical address@—1#£y

o BRMBMUEMREEHNITINE, BRALLE HEMlogical addressHlphysical address@F~—1##Y,
s Z A IAlogical and physical address space differ

e Memory-management unit(MMU): X NZ2REEE A T 7EruntimefYBHE BT LA virtual addressBRETE
133 MBI physical address EEIZ

relocation
register

14000
logical physical
address /\ address

CPU + memory
346 _/ 14346
MMU

Figure 7.4 Dynamic relocation using a relocation register.

o (HEr—MiiE) W LE, SEisHifrelocation register, 7EiX“ relocation registerdfifz
E—ME, §—address generated by a user process#& I X MEBEH#HNFES, For
example, if the base is at 14000, then an attempt by the user to address location 0 is
dynamically relocated to location 14000; an access to location 346 is mapped to location
14346.

e User program only deal with logical address, M3¥A%1EE IEAIphysical address

e The memory-mapping hardware converts logical addresses into physical addresses. This form
of execution-time binding was discussed in Section 7.1.2. The final location of a referenced
memory address is not determined until the reference is made.

e The concept of a logical address space that is bound to a separate physical address space is
central to proper memory management.

o XHEHMAMBEMNZE: XEFENBIELosIRM T —MRIPRZNINE
Dynamic LoadingzhZSin s

o ETRINIEIITIE, SEM—1E, ME—TprocessBEXR FFAAENRA (£EAIEUE, entire
program) #BE7FfEphysical AFEER, FRA—M#HZRA/ N physical memoryrI A/ NGRS
£7, dynamic loadingshiSINEFl2N T #RRX B -EE

o HARMESME? EBREWREFEMRE L, inarelocatable load format. ER2F S B FMME HA
7, FERNT, NRIERNEERTBS—MER, the calling routine BB L E X MEIUERNZFE
SRECZWMET, MRSEMIMEIE, relocatable linking loader& T H ESIEIMERLA
loadi#tmemory, fAEE#FHprogramiaddress table, ZAGIZHISATIFTHFNIERF

o XTMHMREFNETENEFFEKZTASEME ., This method is particularly useful when large
amounts of code are needed to handle infrequently occurring cases, such as error
routines. In this case, although the total program size may be large, the portion that is used
(and hence loaded) may be much smaller.

o BER! XTESMBHTZHRERFIATMEIRITENIRR,

Dynamic Linking and Shared Libraries

source
program

compiler or } compile

assembler time

module
other
object
modules
N
linkage
editor
load \ load
module time
system
library
loader
dynamically)
loaded
system
library in-memory)
dynamic binary ﬁ)rf: l(’:Lonn
linking memory time)
image

o XENINIAE, FIINEEE—dynamically loaded system library, RABHFZHNEFEERE
system library, BBAXPsystem library=7E(+ARMENEIE? ARMABNMNE: 8FSERENS
ER

o FFER:

m statically-linked library is a set of routines, external functions and variables which are
resolved in a caller at compile-time and copied into a target application by a compiler,
linker, or binder, producing an object file and a stand-alone executable

s FSEENE, EREBNRNE, EREFERITEERNREE NBTHRTXEFR, RIR
B2 TEFENHNGT, HERRBFRTE—TEXH, ZREAFFHEREBETZEENN
BEIR, ERATFRE.

o mIER:

s ISEHENE, RAEEFEITRZTBERNRBREAAR, WTFER—1eISEHEE, Tt
B0 RERTRAR, AFFHBRAE—IThSENEIR, SSERBREIARERER, R
SUMSREREAR, XERRDTNREFNAFNEKR, siSH#HEEE—MEFER,
MYXAURBEFTHTHNE, BELESEMEENINE XHEENRIR, K7 EXMHHN
EREHE,

= With dynamic linking, a stub is included in the image for each library- routine
reference. The stub is a small piece of code (stubZFEMERINE? ? stubZFER
FEHE, YXMEFEEMZsystem libraryfitiE, fth3tFsystem libraryfireference
MESBEXstub) that indicates how to locate the appropriate memory-resident

library routine or how to load the library if the routine is not already present. When
the stub is executed, it checks to see whether the needed routine is already in
memory. If it is not, the program loads the routine into memory. Either way, the stub
replaces itself with the address of the routine and executes the routine. (FFIX, F—
PEEXsystem libraryfIFEFSIEX P system library routineg e HMNEFERE, X
T—1PHBEEXsystem libraryfIZFEMABZTEEE NS T) Thus, the next time that
particular code segment is reached, the library routine is executed directly, incurring
no cost for dynamic linking.

Under this scheme, all processes that use a language library execute only one copy of
the library code.

SERENEXRRE T ENEMR, WR—TEEFH T, {E£Adynamic linkinglRHEAS
ZEXKRNEM, ERASTMREFZEErun timefIRHMEZ EZNE, (B2 Rstatic linking,
ERIFNIHMERIEIZINERNE, SIER—ENEM, EJall such programs would need
to be relinked to gain access to the new library. Other programs linked before the
new library was installed will continue using the older library. This system is also
known as shared libraries (EI7SEERE)

o HHERMMRE, —MEHFTHE, HIRBMAZNS IS HEERFNMSINREXH.
H—MEoHSEE, TEREEERNHTHE, RESHNNGNATETRNER, MERETIE
O, shSHHESEIRNTRIT X HERTHRRERBEDSNMBAEINE S, SHARERE
SHHERAXTHSMENTE, EAMERENSIELESEAIIXHERT ., KB
BIMSHIZFERNXHFER/ DY, RATUTERNBSELMILLRENEMHT, ZthE
WEXBREALTN. (BEER)

e fHldynamic loading~A—#H)E, WRHREZEZIEERIPH, REBRERRIUERIHMHEZNE
R, BARERGME XS LIREMHEZER REIEBRIEENSsystem libraryZa inE# 3k

Swapping

o [CIfEZREIANEHTEED, — DHEEARSHP—1ESuspended: Swapped out of RAM for some
reason. BAMAEERKIE N — TFswapiXT™EIE: A process can be swapped temporarily out of
memory to a backing store and then brought back into memory for continued execution

operating w
system
process P,
@ swap out
[
) process P,
@ swap in
w
user
SRaEe backing store

main memory

MG L EERXEE, BEKSE: the memory manager can swap processes fast enough that
some processes will be in memory, ready to execute, when the CPU scheduler wants to
reschedule the CPU

F B XA 2R r] LA T priority-based scheduling &, R —MUKLRFISHOHIZEERH N,
BB memory managerfilSIEM LR AR EHTELAswap out, HUTMARASHHTE, XTMHITR
T, BiLMSAIRAYEN, XEFRXEFEF IR ERIUMroll out, roll in

A process that is swapped out will be swapped back into the same memory space it occupied
previously. — ERNMNRAILUEE (& 4 FERIFN IS E BAHINIE, X processillocation@ AR A]
AT, BRUMRAUEMNEAEERITEHEARIE, then a process can be swapped into a

different memory space, because the physical addresses are computed during execution time.

The system maintains a ready queue consisting of all processes whose memory images are on
the backing store or in memory and are ready to run.

F*Fcpu schedulerfEizfTHFERTEI— /245 Whenever the CPU scheduler decides to execute a
process, it calls the dispatcher. The dispatcher checks to see whether the next process in the
queue is in memory. If it is not, and if there is no free memory region, the dispatcher swaps out
a process currently in memory and swaps in the desired process. It then reloads registers and
transfers control to the selected process.

swapft ERIAT B HAY 1<

o {RIKIMFAE—"Tuser processiz100MB, #AfEhard diskfEAgbacking store, ﬂL’E’]transfer time2
50MB/s, — XRtransferFE&2000milliseconds, fAF#EiR8milliseconds, BB4Aswap—X (&
=inkZout) FE2008milliseconds, FE#AIswap time for one process is 4016 mllllseconds

swap#lcontext switch

E R swap t EAIREIAEHRK, FTLAGRIFAEIZ RswapABLEEIEAZIAN, dynamic memory

Memory Mapping and Protection

In contiguous memory allocation, each process is contained in a single contiguous section of
memory.

ERH9EETE T cpu scheduler2/E 4 @idrelocationflimit registerE{RiFosFIE it B P B 1FHY :

o When the CPU scheduler selects a process for execution, the dispatcher loads the
relocation and limit registers with the correct values as part of the context switch. Because
every address generated by a CPU is checked against these registers, we can protect both
the operating system and other users’ programs and data from being modified by this
running process.

Memory Allocation

HEoh— P REBEND ERNFEI A 2divide memory into several fixed-sized partitions(¥l%). X%
T T ZERBENEIERE— TP MEIE—TIHE, FINXHERIENSNREMRE T
multiprogrammingf_E R,

® Multiple-partition method: when a partition is free, a process is selected from the input queue
and is loaded into the free partition. When the process terminates, the partition becomes
available for another process.

o Fixed-partition scheme

® |n this partitioning, number of partitions (non-overlapping) in RAM are fixed but size
of each partition may or may not be same. Here partition are made before execution
or during system configure.
o Variable-partition scheme:

= |nitially RAM is empty and partitions are made during the run-time according to
process’'s need instead of partitioning during system configure.

m The size of partition will be equal to incoming process.

= The partition size varies according to the need of the process so that the internal
fragmentation can be avoided to ensure efficient utilisation of RAM.

= Number of partitions in RAM is not fixed and depends on the number of incoming
process and Main Memory's size.

= MemoryE MEMNW D ELHBERINFILERE T— T HIZRIER

= textbook EEHMNFFRIEBTAFERMRZANE, — P HEHEKT, RERRT— 1T
REGE, BARXTRFEZ TR EMAE, —FLXTiE, —FEZFRNES, WRHT
1B<BAYEEBZavailabledy, FBAMATEIAmergeE—i2fZ— 1 E ARG, This procedure
is a particular instance of the general dynamic storage- allocation problem, which
concerns how to satisfy a request of size n from a list of free holes, AE—RZIERFH
T2 X AT BMER =M ERISRES :

1. first-fit. Allocate the first hole that is big enough

2. best-fit: Allocate the smallest hole that is big enough.
3. worst-fit: Allocate the /argest hole.

Fragmentation

o WMRZ(EM T first/best fithUREZANE, THAM, XFZHFRITSHEMEER, MR, WEAEE
RNEFHERBNTIE, EXEEEERD W T AEBLTED, S TED TiE#HEEFNEX,
XHEFRIIEFR U External Fragmentation. External fragmentation exists when there is enough
total memory space to satisfy a request but the available spaces are not contiguous; storage is
fragmented into a large number of small holes.

o HAp—"fi#RexternaliyiriEEcompaction: The goal is to shuffle the memory contents so
as to place all free memory together in one large block.

» A LANRAINE L& £ RIFITHASENRTER (relocation@possibledy) AYIE, XTHA
BT FIRESEIAY
o SMEREE R BRRY 5 — DRI RERVARIR A REAVPHTZME U T B2 IEELM, MM ITFEE[
ATAMNYERNEFFRDEHZE. (FPagingR{R)

e Statistical analysis of first fit, for instance, reveals that, even with some optimization, given N
allocated blocks, another 0.5 N blocks will be lost to fragmentation. That is, one-third of memory
may be unusable! This property is known as the 50-percent rule.

e Internal fragmentation: Break the physical memory into fixed-sized blocks and allocate memory
in units based on block size.

o NHAERXFFMIE? RNMRINAEXTARZ18464bytes, — M HIEFE18462bytes, X
PREDEXNHEZERFI T 2bytefSiE, FBA—HEkeep track of this holefJcost=LE &
hole&RBXES, With this approach, the memory allocated to a process may be slightly
larger than the requested memory.

o H—PMHRBEANZEEANNSEIR (EEWNTT) B, BRINHZFAF=ENTFDEIR, MWD EIRA
FIRNZ B TEWARSUER, FRANREE S (internal fragmentation)

Lecture 20 & Lecture 21

Paging (971)

® Paging is a memory-management scheme that permits the physical address space of a process
to be noncontiguous. (Pagingf AR 8 iF— N HIZ AV IR bl 2 A ELERY)

e PagingfiiF4t:

o Avoids external fragmentation (and the need for compaction)

o Solves the considerable problem of fitting memory chunks of varying sizes onto the
backing store, X alRE4AMRE RS — M ERFHNETZEswapped outEfFi#Ebacking
storef9RTF{E, backing store[@#£EIGZE _EEmemory allocationfia)@®, # EBERtEbacking
storeZ2H, EEUREMREZMNE, FilAcompaction/LFEEABIEER

o E5IM, pagingRAREREREMRTHMN, RILRIRITESESEHIIRIERSIKTMpaging
® Basic Method:

o The basic method for implementing paging involves breaking physical memory into fixed-
sized blocks (fixed size, {Bi&HiiEsame size) called frames and breaking logical
memory into blocks of the same size (same size, {B;&Hi72fixed size) called pages.

o Page: pagefIK/NEHBEHRATEN, —ME2MNR (XZBHN T EIEEHEMITIApage number
Hpage offsetAIEHMRREIZLLIRIE) , 7E512bytesF116mb per page Z [E]4FD

= |f the size of the logical address space is 2™ and a page size is 2" addressing units
(bytes or words), then the high-order m — n bits of a logical address designate the page
number and the n low-order bits designate the page offset.

logical physical
address address

CPU

f0000 ... 0000

d

f

page table

f1111 ... 1111

» —NBiEHbIE (address generated by cpu) S DM ERD:

= page number(p): {EN—""Page tablefJindex, X tableB®& Tthe base address
of each page in physical memory

= page offset(d): BT _EEKIpage numbertkE| T B{Aipage table EEXT N AR T
2, page offsetfllpage table EEIE X HI B AL & B, — T physical memory
address, FARMILEIT ! (displacement within the page)tbiRiE A5+ & TEARY

page 0
01
page 1 1 n
page 2 2 E
3
page 3 page table
logical
memory
EXNEEH R EABRS
page offsetB 4

frame
number

0

1

2

physical
memory

page 0

page 2

page 1

page 3

physica

memory

o H—PHIBERETITH, XD HZMpage M #—Tavailablefimemory frame (B4R
file systemBy, EAZEbacking storefy)

o — NEflconcretefd{flF

0|a 0
1]1b
2|c
3|d
4 | e 4 i
5| f j
o[5]
6 k
7 | h 16| |
o 2[1] 5 [m
n
10| k 3(2] o
1] 1 page table p
12| m 12
13| n
14| o
15| p
logical memory 16
. 2
=2 - f&.ﬂe §|2_Q =
MY —> [ogic oddress 2008
Stace = 2% = (b bytes q
24 | e
f
Phugical memovy ;i
v 28
32 bytes

physical memory

For logical address 0: page num = 0, page offset = 0, Mpage numi%Zlpage table?fI{E
=5, BA

According physical address : (5% 4) + 0 = 20

For logical address 3: page num = 0, page offset = 3, MA\page numikxZE|page tabley{E
&5, B4

According physical address : (5% 4) +3 = 23

For logical address 4: page num = 1, page offset = 0, Mpage numi%Zlpage tableH#I{E
6, Ba

According physical address : (6 x4) + 0 =24

PALEZEHE, ENITEpage sizeg4 byte, FRAIEEE#IE D 4D (194 bytes) , 1piEith
HERK/INE32 bytes, FREAYPIEHBHE R HEEB B M8 M pages, FERXFIER T, LLANEFER
F—BiEMNL0, METEEMUIIE—Tpage, FilApage numE0, ABEMEXTX
MpageH R MM EHE2E—1, FilApage offset20, Mpage numixZlpage tabledfy
BEE5, ABEHIT(5x4) + 0 =20, IBAXMTIZIEMI ORI ZIMIEHRHIFE20

Logical Address = 24 bits

m | ogical Address space = 2 A 24 bytes

m |et's say, Page size =4 KB =2 " 12 Bytes

m Page offset =12

= Number of bits in a page = Logical Address - Page Offset = 24 - 12 = 12 bits

= Number of pages=2212=2X2X107210=4KB

m |et's say, Page table entry = 1 Byte

m Therefore, the size of the page table =4 KB X 1 Byte =4 KB

o PagefllFramefJX37l: "page" means "virtual page" (i.e. a chunk of virtual address space)

and "page frame" means "physical page" (i.e. a chunk of physical memory). thil 2R 114
K R—HR, RAE—"1Zlogically— Ephysicalfy

o Using paging is similar to using a table of base (or relocation) registers, one for each frame
of memory

HEAMERpagingfUitiE, external fragmentationS#RMNEHR, frameS P EAE BERHFIE.

{BRinternal fragmentationZliZ AR EER (MERALES/RAHENAFTATHEIMBEN) , &
BARIERT, —THEFEEn pages + 1 byte, X#FHIF FEAEN + 11 frameEHE=Hinternal
fragmentation of almost an entire frame

If process size is independent of page size, we expect internal fragmentation to average
one-half page per process: X#FthFiZEi%, WRpage size/h—RBE, HFEEY, BEUNR
page size/\iJi&, page tableth FEFEZHIRIA, XR1EMoverhead

Today, pages typically are between 4 KB and 8 KB in size, and some systems support even
larger page sizes. B cpuERAZEEZEFTEZ I —Hpage size,

Usually, each page-table entry is 4 bytes long, but that size can vary as well. A 32-bit entry
can point to one of 23 physical page frames. If frame size is 4 KB, then a system with 4-
byte entries can address 2** bytes (or 16 TB) of physical memory. 4 byte entryaJ X $g @232 4
physical page frames, —1MZ&Zifframe size, —MrameRYA/NZE4kb, ERLAXNEEER Maddress
232 x 4K B/ bytes

free-frame list free-frame list
13 15 13 page 1
14 14 |page 0
15 15
16 16
17 17
18 18 |page 2
19 19
20 20 |page 3
21 new-process page table 21

(a) (b)

Figure 7.10 Free frames (a) before allocation and (b) after allocation.

* XTpagingREZN— TSI ZAFNTAFN T RIRZMERNFERE R —HY

e —M#FEhas no way of addressing memory outside of its page table, and the table includes only
those pages that the process owns.

o FANRRERAJ[NIRNEE (IBZiEihitmapR 4Bttt FEZXE) , FRIMRERRONEFRE—L(F
B, ttulffeframeBERER T, WMframel®ZBEER, SHAEFR TZ M M frameFSE, XLEE
B, #EEFEE—"IUframe tablefdata structure 2EH

o The frame table has one entry for each physical page frame, indicating whether the
latter is free or allocated and, if it is allocated, to which page of which process or processes.
o HH, osiEMMEIREEcopy of page table, XH¥E N T ERNK IS FNIEEEHIEIZ RN IEH
fit, #H, Itisalso used by the CPU dispatcher to define the hardware page table when a
process is to be allocated the CPU. FilA, paging&1giicontext-switch time? ?

Hardware Support

o KEDHIRIERFZANBMTIHTZE—page table, RETEPCBEEEFIEMIX"page tablefy
pointer, H—"dispatcherZHIT—MHZNIME, B TEIMNHregisterfVE, Afadefine
the correct hardware page-table values from the stored user page table (FFIAZTE
hardwaref 5 —"page tablefy?)

o FRAXEHIIFEEHZ B Aimplement page tablefy:
® Case 1: The page table is implemented as a set of dedicated registers. FiIARE R, XLEZ A
page tableF 723 FEMAEIME S IFAIMEM, X7 BE{RilEpaging-addressiIEIEE &M
o EANMEF, WR—HbltE 16bits, page size Z8kb, #4page tablefiEE T /\ M EIREESS
E=F&KR8Mentries, X MHIX[OMZEpagefIEE, — ittt Z16bits, BB4logical address
spaceft22'%, page size28KB, thiiE2" bytes, %B/Aﬁﬁb{ia‘ﬂ:iz—/l\ﬂﬂiiﬁﬁg%ﬁ\page
o H—LERERZAFpage tablefIBIEE Z Mentry, XiRAEBEERL TR, RIESXEF
IRt R IRETSEN

o Rather, the page table is kept in main memory, and a page-table base register (PTBR)
points to the page table. E¥Zpage table A EERAFHRLEX— NS FREMAINT

o MEm! MUEERE, HFfIEEaccess locationi, BAKMNEESLAPTBRIEZEKZIpage
table, #AfEFpage tablefJEZEKLEIEIEMphysical memory, BRARIAEZINE, Fflaccess
— P byte BEM,Rmemory access, memory access is slowed by a factor of 2, EAIME?

TLB!

o REBRERZTIAKZEmemory map (page table)

TLB (Translation Look-aside buffer (TLB))

BTEG

Associative, high-speed memory

Each entry in the TLB consists of two parts: a key (or tag) and a value

BABIENIE? —H—PitemiEATLBRIEE, TLBREIAEXMitemFE SHIFREIkey>RIMEEERR, N
RHE T W Mkey, FareturnIINAIE. ATLBIEZRIELAIMR, TLB—AREE64F11024 entries

TLBE®E R 70 Hpage table entries

logical

address
CPU —>| p | d

page frame
number number

TLB hit

physical

:
E

TLB

TLB miss

address

page table

Figure 7.11 Paging hardware with TLB.

physical
memory

o Hcpulgisk T —"Mlogical addressZfg, X Mlogical addressiypage numberaB % EETLB
B, NRFT, BBATLBEEHFIframe number, FEEZXEphysical addressT, XMUMITLB
Hit; AREHAIIE, FETLB Miss, IBAFEZ ZEI—#E, BT memory access

o Ifthe TLB is already full of entries, the operating system must select one for
replacement. Replacement policies range from least recently used (LRU) to random.
o BMBE—MAIRER, A—LthbERIF—Lentry2wire downhy, XtEA T A IR AT LAMt b4 A
=
o Some TLBs store address-space identifiers (ASIDs) in each TLB entry. An ASID uniquely
identifies each process and is used to provide address-space protection for that
process.? ? ? ? XNEEMEN
e Hit ratio: The percentage of times that a particular page number is found in the TLB
The percentage of times that a particular page number is found in the TLB
is called the hit ratio. An 80-percent hit ratio, for example, means that we
find the desired page number in the TLB 80 percent of the time. If it takes 20
nanoseconds to search the TLB and 100 nanoseconds to access memory, then
a mapped-memory access takes 120 nanoseconds when the page number is
in the TLB. If we fail to find the page number in the TLB (20 nanoseconds),
then we must first access memory for the page table and frame number (100
nanoseconds) and then access the desired byte in memory (100 nanoseconds),
for a total of 220 nanoseconds. To find the effective memory-access time, we
weight the case by its probability:

effective access time = 0.80 x 120 + 0.20 x 220
= 140 nanoseconds.

In this example, we suffer a 40-percent slowdown in memory-access time (from
100 to 140 nanoseconds).
For a 98-percent hit ratio, we have

effective access time = 0.98 x 120 + 0.02 x 220
= 122 nanoseconds.

This increased hit rate produces only a 22-percent slowdown in access time.
We will further explore the impact of the hit ratio on the TLB in Chapter 8.

Lecture 22

Protection

o BMERTEIZA T pagediItllEl, thBEEXNREFARI, MiXprotectionzi@idprotection
bits (associated with each frame) E5EAHI. There bits are kept in page table,

o XM bithEAEREE X — T page RIENAEZFILUEER, HYPIRMIHFITERRIR, the
protection bits can be checked to verify that no writes are being made to a read-only page.
MRE=XEEHIE—memory-protection violation, FEXTMEA L, HARTMUIIAEZHIRE
#ll: execute-only, ...

o [RTiX/bit, EE T page table#fF—NUffvalid-invalid bit, validftRAIRE HHlpageREHTZMIZ
EMEZS BB E, FRLARvalidhy; invalidfi 2t A7E

0
1
2| page 0
00000 frame number valid—invalid bit
page 0 \ / 3| page 1
0|2 |v
page 1 113 v 4| page 2
2|4 |v
age 2 5
. 3|7V
page 3 4/ 8|V 6
5/9|v
page 4 6|0/ 7| page3
7 :
10,468 | page 5 01 8| page 4
12,287 page table
9| page 5
2R EE6Mpage , FiTEpage tablesi EE-E M HE A .
fvalid-invalid bit&R4{1% B 71
page n

Figure 7.12 Valid (v) or invalid (i) bit in a page table.

o ummAEXNEAFIRIZE T —"Pinternal fragmentation (11528 page 298)
Shared Pages

o MNRIFAERZNMERENITHNHERE—TREE, HEX M IBEreentrant code: non-self-
modifying code, 1B XEBRBERITHEEFRAETELMN., WRFEXMIBERAE, BBATLTAT
EIRYEFE R AT R — ERTEREF RIS

ed1 0
ed2 1| datai
ed 3 2| data3
data 1 page table 3 ed1
for P, ed 1
process P, 4] ed2
ed2
5
ed 3
6 ed3
data 2 page table
for P, 7| data2
ed1 2

process P,

ed 2

n P1,P2 P3ERHMITHAEFN o

ed3 E FEA—BAE
10
data 3 page table
for P, 11
process Py

Hierarchical Paging

o MAITENP, EEMUTEIFEXR, EXMBRT, FESEEpage table SRS ER THIZHA
7Z. One simple solution to this problem is to divide the page table into smaller pieces.
We can accomplish this division in several ways.

0
/
Py L]
. 100 ——
500 N
\\ / °
7 — :
08 —
. 708
outer page \\ 929 .
table - N 900
900 | 0
page of 929
page table
page table E
memory

o A EZE—Hi%, the page table itself is also paged, U EAISEMHEE—132-bitAlogical
address space and a page size of 4KB, %B/A,E’\,itﬁ;% = 220/ page

» [f the size of the logical address space is 2™ and a page size is 2™ addressing units
(bytes or words), then the high-order m — n bits of a logical address designate the page
number and the n low-order bits designate the page offset.

= FRLAEI#Epage number& 20/ bits, fMpage offsetll212bits, XENMIEEARFHE
fit Epage T page table, FFIA, further divided:

page number

page offset

| P1

| P2

2 |

10

10

12

» EXPEME, pl1indexinto the outer page table, and p2 is the displacement within
the page of the inner page table. FTlAZAp 1 Zpage tablefpage table (outer page
table) FRAXINAYEFRAIpage tabledipage, fAIEp2=&inner page tablefJoffset, #ZEI7T
SN HpageZ e, BHpage offsetBEphysical addressHfyoffset, BIRAIRIIAE TE

logical address

P[P | d |

o]

=

outer page
table d {

page of
page table

» Xfhschemetififorward-mapped page table

o BIUITERI, XEFEFHIRIESILpage tablelIAFAAFREE, LEAIRINIARTBIF, IEE D5
M Npage table, —/“page table'g2'%entries, FRINIIEBEHNINEFRZ2 « 210 x 22 = 8KB
for two page table

Segmentation

e Segmentation is a memory-management scheme that supports this user view of memory.

subroutine

main
program

% & BiX#¥ # segments

logical address

e SegmentationRIEZiEHII T BB EEsegmentstIE S, B segmentBBCHRFHNKE., itk
¥rBA T segmentfBE, BAKoffset within the segment, FilAThe user therefore specifies each
address by two quantities: a segment name and an offset. —f& 3 7 EE®MES, segment
namez=f&segment numbertaE#kid, FTA—A%Z: a segment number and an offset.

FMpaging scheme R [EMIZ: TEpaging scheme, RARIE—TRIVIBIEMNIFD Kpage
numberfpage offset, FANIE@EZRY)IBHBNE,

—RRRIR, H—"user program#EmIFHIATIR, RIFLRMERIXNinput programeliEsegment:

o A Ccompiler might create separate segments for the following:

1. The code

2. Global variables

3. The heap, from which memory is allocated

4. The stacks used by each thread

5. The standard C library
BN TUTERMAI NRIRFENMEFERE, BRIAMNTN—ERTE, PBRMNSTTMNEXS
2

1. TEERNYIEEN, PTIERANLMBEHRSEAR, WHBRRFNIINEL, REAFNFAE,
BIZERNEZEREN, EEF—HEEXENTENER. 7BRINBNEN T BT &SR
FHEZE,

2. TRNEEBHRRSURE; MENKENAEE, RETHRFAREENRER.

3. TR = BR —4MY, BFARFBANA—MCICH, BIRIRER—bE; Mo ERROPRL bt
FTEEZHMN, BFAEMR— TN, BHELLRR, XFHREERAMI,

Segment table: Map two- dimensional user-defined addresses into one-dimensional physical
addresses. M ZHIATRIK, segment tableFREIE—Tentry#E X T X segmentfZiEATbase iRt
WU E, EFsegment limitii 2 X segmentfiKE

|

— limit |base —
segment
table
CPU | s | d

segment number#% Elsegment table 3 K7 §9iX / segment#base address ,
X base address4 A offset £ B B4R R Ay (v B

trap: addressing error physical memory

subroutine stack
1400
segment 3 segment 0
2400
symbol
segment 0 table
limit | base
Sqrt segment 4 0| 1000 | 1400
1| 400 | 6300 | 3200
main 2| 400 | 4300
program 3| 1100 | 3200 segment 3|
41 1000 | 4700
segment table 4300
segment 1 segment 2 segment 2
4700
logical address space segment 4
5700
N = 6300
N B0 B AR B F segment 1

6700
physical memory

Lecture 23
Segmentation with paging

o SCIEZEMIIANB DER, REBIEERED KT
e flMassignment 4HE—RESIEEEFTRERME

o XHEFHERZE, segemnt table REEARFENbaseP IRl (I &, INEZZAL T IRz RIpage table,
REEHsegment limit

o FRAE(ERXFFRIschemefiT(R, ZEHbILXS T MR X FAY:

o Segment#: Segment_offset
o ABERXMNRAWIRIERSBEIEM: Segment#:Page#:Page_Offset
o thii2Rik, TWEI—MBIEMIAITE, iR#Esegment table base registersiB 3 Zlsegment table
HNIE, ARRIEXMNZHEIHE SRR M AIsegment entry, it would be something like this:

Segment# Segment size Page table base address
0 512kb 011
1 512kb 045

o IRiEsegment tableski% EI3F N fpage table base address, A5 ZEIpage table, it would be
something like this:

Page# Page base address
0 0742
1 0693
o SREtRIEpage# L EIIRMentry, #ZFlpage base address, #AGIRIEpage offsetiiE RER I E
-Segmentation with paging and TLB:

o —MbEEFENE:
= Segment#:Page#:limit: Frame#

Lecture 24

Virtual Memory

o ZRITICHIZRA, MERILE: MRET—THENE, EBRABLFEEHLTmain memoryZz
|8], Mvirtual memory: A technique that allows the execution of processes that are not
completely in memory

o FIAH—MEFERATR, thAVIZEIIE SRS Mpage, XRBEERMN, METH MBI D
M N page, 1BE2AALRR L Fallocate— P WIEEEAIframesdiXNpage

o Advantage:

1. program can be larger than physical memory

2. virtual memory abstracts main memory into an extremely large, uniform array of
storage, separating logical memory as viewed by the user from physical memory

3. AEEENXHHE, HHEIFXLWshared memory

4. RET —MBERRNLIEHARENS N

o MEBWR—AR—TBNEFEIVEN, HARZIE —TENEFTEET L4 error
conditionf9fXH5, ATMU—RARSERR L3RR, WMERXTerror™E LANE, REABEASRER; HERE
array, —MlRRBERSRECEMBENTE; XHEZE—LELREIRIINEE

page O

page 1

page 2 =

muil B N
N EpEE
BN
—l I |
BN

[\

memory
map v
page v physical
. memory
virtual
memory

o M EXMHZE—TIERAE T virtual memoryfRnEE

Max

stack

heap

data

code

0

o DA EIGKENER T —MEEREMAERSE, XKERE— T virtual view of how a process is
stored in memory, AETEIBEBNETEY, NEKFRAsparse address space, XFZFwill require
actual physical pages only if the heap or stack grows

e Demand paging:
o Load pages only as they are needed, AT MIHIZE, BHEiRRBpagetlHEIIRHZEA

=tfloaded, XTFMZBIHFIHN— RSB ER: MBRHE—RPRETUEER, REEAIIX
THREZEASIEXTHEMNLEMBREIREFS; {B2XTdeman paging(ERZE] 7 —0U
f#lazy swapperfyZsFa: A lazy swapper never swaps a page into memory unless that page
will be needed.

o IETRth(FEApagerMAEHswapper, FAswapigiIZEHRBENTEAHIE

o When a process is to be swapped in, the pager guesses which pages will be used before the
process is swapped out again. FIAA TEMX—R, FE—LEH LIXE, BHMEFEXRD
FMLESTTELTRNFEET, MESTUAEHASRE, FTUEE ZR1Mvalid-invalid bitEX 7, R
AEMEEX LEBMHMER: validiBlE1X " pagelegaliVxss, X pagetAEF;
invalidigi@ X T pageE 4 =illegal NEARERNFER

0
1
0 A 2
] 5 vaIidBiirtwaIid 5 /\
. - frameo\4 . - v
v
3 D 1 i 5 l:l D l:l
o E Y 1 G I [
5| F 4| i
5[9 |v ’ [o] [E]
6 G 6| |i 8
7 H 7 i 9 F E
logical page table 10
memory I:I I:l I:I
11
w
12
13
14
15

physical memory

o FANIRIBHVRERIIE, FLinvalidDTTEAZEAEIN, DHASWAEINNE, XEFHIERE
= iRA B)EAY

o BRURAFT ARLEIRE T invalidi D T1H91E —Page fault

page is on
backing store

&b page fault

operating
system

@

reference
trap

@
load M |« a li
®

restart page table

instruction
free frame |« 1
reset page bring in
table missing page
physical
memory

o HAESE— MXET+4#FEMinvalid
o MRBTFRERAZEMMemory accessiIiE, FRAEIZIEHIELERIE
o MRBFASERARE, BRRRTERERANAFEN D TIHE:

n AFEFRHE—"free frame, SAFIED TIMELEIE LN X Mree framerp
» AfEEHinternal table, AFMENFiXpagediit, MaIvalid-invalid bitEELTH T
valid

o HEEIZIRINIEITEIAHIZER

e We check an internal table (usually kept with the process control block) for this process to
determine whether the reference was a valid or an invalid memory access.

o If the reference was invalid, we terminate the process. If it was valid, but we have not yet
brought in that page, we now page it in.

o We find a free frame (by taking one from the free-frame list, for example).
o We schedule a disk operation to read the desired page into the newly
allocated frame.

o When the disk read is complete, we modify the internal table kept with the process and the
page table to indicate that the page is now in memory.

o We restart the instruction that was interrupted by the trap. The process can now access the
page as though it had always been in memory

Pure Demand Paging: never bring a page into memory until it is required.

o We can start executing a process with no pages in memory. FilA H1TE—PMIELHIRHE,
M, MEZLXE—"invalid bitT, EZLMET —1page faultT, AEHKEZWframe, XHEFHIE
fth A NEBE N pagef SR H— Xpage fault, HRIMEENpage SERHGE T RFTE

EEAR I EEITE— a2 IEE, FBAA + BREMARIBHREfetchi k2 G, MEITE, AEE
ACH, BRURCUER I T page fault, BBAZE ZRINRIERSENTIR; ALEERENE
B, —FESEFREZ ML, FIAREREEIELE —¥ Mfaultie T

Effective Access time:

o WR—EH&Bpage faultiIAYIE, FBAfthEYeffective access time = memory access time
o WRHBpage faultBIMAIIE:

= p (probability of a page fault) € [0,1]
= Effective access time = (1 — p) x ma(memory access time) + p * page fault time
o AIMWMRETHEHIXMIIE, FoFislEpage fault BEZ/DATE], H—page faultk4E, AT
MNERERE:

o ..pptLEHMIpage fault handler 354, 21EH, FEREHPIRATHRZMET, WX AN
R=MHREETT, HBE—MHEBE T —page fault TZEREAN, RETIRIIEERZ
[B]AYFE IR 2 2R

1. Trap to the operating system.

2. Save the user registers and process state.

XEHR Y —Ppagefault REZFELRBERENSEE , TAMRE L Hpage fault§ SRENIE , 2
BEEERZIX LR EHY

Chapter 8 Virtual Memory

3. Determine that the interrupt was a page fault.

4. Check that the page reference was legal and determine the location of the
page on the disk.

5. Issue aread from the disk to a free frame:
a. Wait in a queue for this device until the read request is serviced.
b. Wait for the device seek and/or latency time.
c. Begin the transfer of the page to a free frame.

6. While waiting, allocate the CPU to some other user (CPU scheduling,
optional).

7. Receive an interrupt from the disk I/0 subsystem (I/O completed).
8. Save the registers and process state for the other user (if step 6 is executed).
9. Determine that the interrupt was from the disk.

10. Correct the page table and other tables to show that the desired page is
now in memory.

11. Wait for the CPU to be allocated to this process again.

12. Restore the user registers, process state, and new page table, and then
resume the interrupted instruction.

o BEREBE, HMNRATEZER=1"EEMNHD:

1. Service the page-fault interrupt

2. Read in the page

3. Restart the process

e The first and third tasks can be reduced, with careful coding, to several hundred instructions.

These tasks may take from 1 to 100 microseconds each. The page-switch time, however, will
probably be close to 8 milliseconds. (A typical hard disk has an average latency of 3
milliseconds, a seek of 5 milliseconds, and a transfer time of 0.05 milliseconds. Thus, the total
paging time is about 8 milliseconds, including hardware and software time.) ;XEiRIEHE,
181 T paging timehYAT(E]: 8ms

o FRLMKIERINIE AT

Effective access time = (1 — p)*200 + p*8ms
= 200 + 7999800\ *p

AINES, X EfEHpage-fault rate @R IELEH
ML BB ATTEIXErate 2 KA

Page replacement

Is a mechanism that allows the OS to select a page among many in the RAM and swap it out to
HDD to free a frame to host a new page from the HDD

R BIRTHEER, WR&HavailablefSframehViE, cpuBBMLta: EMAER HE&Eframe
pagefaia i, AEIEHTEEframelpagetfiaift3k

Reference Page: First, for a given page size (and the page size is generally fixed by the
hardware or system), we need to consider only the page number, rather than the entire
address. Second, if we have a reference to a page p, then any references to page p that
immediately follow will never cause a page fault. Page p will be in memory after the first
reference, so the immediately following references will not fault.

FriBfIReference stringfi @ X f9page number
REEANEBT =1 page replacement algorithm

o FIFO
o OPT: Clairvoyant replacement algorithm, replaces the pages that will not be used for the
longest period of time. EAEXIIXMHIIELIE FEadditional infromation about
reference stringFfiLATR3implemented
o LRU: replaces the pages that had not been referenced for the longest period of time.
o MFU: Most frequently ussed,
EANER LR, RAENEFIRITSNTARSRFLIRITIFNpage replacementB AR EERIECE,
FRDRIE RSHIRM T B —FBRSS: Raw I/0, iLF2% H Sspecify B 2 #special-purpose storage

Side topic: BUFFER(42/%) vs CACHE(£E7%)

B8R, BUFFERMIZZIOMERZARER, S, tLMRBMWEB100RER, WRIPHRA,
RETARENEEILELIEFRENERE XMEER., A TBUFFEREZRE®R, TAE10ME—RHE
B, WREWHEHRD, BAREST, HFIB/RT ., WAEM T HE.

CACHERIZOMER EINIREXAREE . LR —TMRERITEMST T, TREZRER, MiIL4E
BRFB—MFENMAFE, NATHEBET. IRTHIERANERE,
REE—EFNEREEZHIIEEX minimum number of frame, —LELEBARIHIERE: RAWMR
— MELTENITEI—F B Rpage faulttBIL T, BRARXTIESHMOISENIT, AMUNR—FIES
FEZ="frame, MR RBE—"free frame, PARXTEIRKEZTET
FRLAUE AEE S E M frameXl 75 48 processili i i Y E Z (Allocation of frame), EFRE LM
scheme

1. equal allocation

2. proportional allocation
Global Allocation: Global replacement allows a process to select a replacement frame from the
set of all frames, even if that frame is currently allocated to some other process; that is, one

process can take a frame from another.

Local Allocation: Local replacement requires that each process select from only its own set of
allocated frames.

MEERBYLRRE, WMEREFEERBITRE, cpulbZEIB i cpu, BREcpufEMBE—EBD AFHIA R
SRR, XN RFHFRAINon-Uniform-memory access system

Thrashing

ARME—LERHINSBEEUNR—MHIZIZE BBrIframe, BAMEEITHNIE, RIRMESE
Apage fault, BBAMMEELIE, FRAMBEEpPaging L RIRTEILEMD SEFRAITIE S MRt EIE T E R, X
¥ aiERthrashing(&if#), a process is thrashing if it's spending more time paging than
executing
EIRAPg370E AR Apaging systemi— P EEMARRNELZFRMENINR
o BEARLME: CPUFIBERZTE -> degree of multiprograming =7t (global allocation used here)
-> available framefEEHZHELT ZMED -> W F#HEKiTpage fault rate EF+ -> HZHRTE
Zf¥pagelIdiEH -> CPURIBETEA B MSEER
Fllocal scheme] AR XN BIRUA I E R HIZRframe), EREEMRERR, REEEX N E@5]
@ S 5h—"e) R
ZHIFNBRIEOR, HMRAIUNAHEREAARENE frame
o Locality: A locality is a set of pages that are actively used together (Figure 8.19). A program
is generally composed of several different localities that may overlap, locality@H—"1#12
HORE e S5 A I RO IR S5 A SR TERY.
o FfibALocality modelFZE#HIZIEH 2 AIbasic memory referencefaBR R

o FRURLAEIRIBIXMocality modelE R Ecframe
o Working set 982

A : defines how many page re ference will be in one working set
WORKING SET : The set which contains most recent Apage

o REEFAIMFHUTHAT:

D=) WSS,
D is the total number of demands for frames

o WEHMRZEMA BT X AFIRTT

o [E IR A LATRIEPFF(page fault frequency)§E¥UH‘ﬁéﬁ—/\processﬂ’]frame i T‘ FE2/0T, BRIt E]
BRIE X MERIZTHthrashing(Bthrashingf9Bt{®, page fault rateRBE T %)

e https://blog.csdn.net/qq _28602957/article/details/53821061
o NEXBNEHNIEREY, BFE—LITERNETN
o HHAMBEILEMIME, —MIEHILTMER

v RIEFEMFRE, HESE-RNERAENTREEELEITEMMRINIIESE L
 HEEHMERENN TN, TESEANREZN
» STSMEIRENEZE, TEEBRREE—TEHEREMNER

o T{RSERMEN ZRRIEANITHERARFEERITEATTARIMIMN],

Monitors for synchronization

e Timing error still occur when semaphores are used(rarely tho)
® Various types of errors can be generated easily when programmers use semaphores incorrectly
o AN T RAJREANB RIX TR TN, A&BA T high level language constructs: monitor

e Abstract data type(ADT): encapsulates([£4g) private data with public methods to operate on
that data

o ARFEMRFIRMTLZEMONITOREFR/ M3

o Monitor type2ADTHI—F, 12— %ﬁUE’JEEprogrammer/EXE’Hﬂ’E XERIERNNTERR
HNFREFRHEEFEE, THEERMNWIKIEX
o & (RiE: Monitors, HiRNEER) BE—MEREN, SMANZINFER (WRIER)
BAZ P TELZEDRIFORERE, XEHZHF—REEGE—HETE, ERIMWTE—D
MER, RERBE-TEEEHTERNENFER. SHLETEREIBEMIIE FIHEH
HERZRFIZITELE, ERIIMEREZE LEL TRERIRIT.
M 2ERE#syntax

monitor monitor name

{

Condition variables: x1

Local variables: vl

procedure P1l(...) {
//

}

procedure P2(...) {
//
}

procedure Pn(...) {

//

https://blog.csdn.net/qq_28602957/article/details/53821061

initialization code(...){
//

o AU LERISyntaxfIERBE: WMRBERITEXER T monitorFEFF25F (procedure) , MAHIE
Rt

entry queue

shared data

queues associated with

x, y conditions y ~EE-

Y

operations

initialization
code

Figure 6.18 Monitor with condition variables.

e Condition type
lIIC
condition x, y;

x.wait();

x.signasignasignal();
- condition typelIZEMESEIEFER, x.wait() BHE: T TREXTESHHESHsuspended
until another process invokes x.signal()
- A process without any condition variables is called a pure monitor
-EREEN—RE HEDHENIT x.signal AR, Bt LR, thASEFBESKcriticla
setion, EJ "x.signal())BITEX T : The x.signal() operation resumes exactly one suspended process.HB
AR TR ERIBR, TENRSSRKEARAINE:

1. Signal and wait: Process which execute the x.signal exit its critical section immediately and

yield the right to the process which has been resumed

2. Signal and continue: Process which execute x.signal continue its execution, the process which
has been resumed must wait until this process finish

® Java Monitor != Traditional critical section

o EHENGCERIAZFT—NHREHANTXEAB, 5—1MHEMARITFEAXERE T, B2UR
£java monitorfJiE:

= Declaring a method synchronized implies that only one thread may invoke that
method on a particular object at any given time.
e Notify VS Notifyall

o B, EMEFHHABNAIXZ:

n EE: ATEFEPNHEE, FTEEZFU. PIT T watlIERERSHENEF G A
= fith: BTHOMFNHE, 2EESH, BN, REEYRwaItERERT, 4TF8in
RHREMEB AT AE RS
o miESciRiEEjava monitord /L MMunctionfIERZET A

n Bt x.wait() XTRE, BAMHNBFRESETNwaitE—ER, EBIIINERTZER
—¥, X Pwait)RFHFHEE:

1. Suspend the thread which called. IB#1T 7 XM R I ETZMNE1F R
2. Unlock monitor. 81X MNEF2 2S48 ISR L K
m H)R x.notify() fl x.notifyall () XM TREAEMINEERE —HEN

» RE—TEHZNESFGHPNEE, FEE-THZNEFEHHPNERERABIT

" x.notify():MREE—TEAE, BX—TEERADBE

" x.notify():MREEZEATHFFERNGRE, HFRECEHATHFFEPNEIERAB

iR
o BTMLEMEM, MAENMTA x.notify() JEEREMIEHMT . BR—T, H—TEEHNL

FEPUAT x.notify (), XBY, B—TLATFFHRRLZEA)RBET 800, 3o S BRINNSGER
TrwaitZfa, EBREKRLSR, FREBSHRAFHES, ZTEHR, UTI0HRZIZARMIE
ATXTH, FEHFRETECHNARA, ERMRMAERITwaitEE, FHRERIT
notify/notifyall, IERS, SABMKBERT, EEENEEHLTFE0H, MIOEED, B
AR TR, AMMMITRERBBH, TEMIEH T . ERREHIT—Rnotifyall, £
RSN SHABOEPIEX 8. B LEERAnotifyliH R, MRESTEREES, £WMT
LREBAEhETENHEF ZIEHIE,

CPU Scheduling

® CPU scheduling: Switchin the CPU among processes, by doing this, os can make the computer
more productive

o ENWEMZIRSCPURIFIMER, HESLCPU SchedulingZRZiMideaRHHEEAY: A process is
executed until it must wait, FiLAI R B & ZHRIscheduling systemBdiE, H— P #HiZEwaithIRY
f&, EEZNTEHATI/O requestiIRT R, CPUREFEAE, REE TIRZMITE, FAUSEMAIEISR
B, S THELNESFHNME, ostfEcpuFEIR, HESRES—T#HE, TRFENE

CPU Scheduler

e CPU scheduler@aTHiE—PMHBEMNRZMHBREMELR, HESRIRANENCPUR, XTHIEN
BAFI (FhEMECPU scheduleri&iZ# 280ttt 5) A AR SMARME Zimplement

e Dispatcher: The dispatcher is the module that gives control of the CPU to the process selected
by the short-term scheduler.

Preemptive Scheduling

® CPU Scheduling Decision may take place under the following four circumstances:

1. When a process switch from the running state to the waiting state
2. When a process switch from the running state to the ready state
3. When a process switch from the waiting state to the ready state
4. When a process terminates
e HischedulingRTE1, 4&%4%, X#EFHIscheduling schemetfFRAanonpreemptive/cooperative

o nonpreemptive scheduling scheme &£ RIE, #HOEEIcpulHEa—E SB&EUEEIT
—/Rscheduling& 4
e IschedulingthE2, 3&4, Xt FMIscheduling schemetFRJopreemptive

o fEfhschemeREEXN/MIFS LErace conditionBYERIEAE
o FEXMHFTE, BE—FMMEREILINAEE: H—THETEEAZOEIENRRE, iR

preemptive 1
Scheduling Criteria

o X MEME—LZERFRscheduling algorithmBgtm &

e CPU utilization

e Throughput: One measure of work is the number of processes that are completed per time unit,
called throughput

e Turnaround Time: The interval from the time of submission of a process to the time of
completion is the turnaround time. Turnaround time is the sum of the periods spent waiting to
get into memory, waiting in the ready queue, executing on the CPU, and doing I/0. — M2 1R
R E|5Th YT AR RYE],

e Waiting Time: Waiting time is the sum of the periods spent waiting in the ready queue. #iZ7ER
ZEIANY R EFSAT AR Z 0,

® CPU burst: CPU burst is when the process is being executed in the CPU

e Response Time: This measure, called response time, is the time it takes to start responding, not
the time it takes to output the response. E—#HRZ MR HIBAEIER, FEHFREEICPUTEERINA,
H B Ffr42 HRORY]

Scheduling Algorithms

e First-come, First-Served Scheduling(FCFS): FIFIFOfR{&: The process that requests the CPU first
is allocated the CPU first. # HZimplement X Bl A —1FIFO, fR R Z2waiting time= LR
<, EB, SNRFTHFMNINHARREEHFERKONENE, EEMESFRKNE, TEE—KGantt
chart, illustrate T FAFCFSHIschemefiEft A E ST B B H S K

P; P, | P

0 24 27 30

o BEUWREp1, p2, p3lIHITINFE 2 RERIE, Bilwait timefIEMSLEEFFEERZ, FRUAXSFFCFS
Bscheme3&if, B{IEwait timefIRIMBAIZE _ESHEHTZburst timeF 2

o HEXR™4%convoy effect (IPEMN) : MBWFSZHBE—BE—ITARKHERERN. FEAEFENR
FCFS@E T nonpreemptivefIscheme, H—1#HgGEpUT, BIREEMAR MMMEF EZFECPU

e Shortest-Job-First Scheduling(SJF)/Shortest-next-cpu-burst-algorithm: iX{~algorithmt 3F & 4738
f#: HCPU availablefyit{®, fhiEEMBHE, ARSIECpU assignBATCPU burst&i2HIFHEE, W
SRcpu burst of AT HERE—1FAVIE, MSERERRINIAIFCFS scheme. {EAS)FHEIERR T Zoptimal
19, X ToptimaligHIZfM7Ewait time LMH, it gives the minimum average waiting time for a given
set of processes.

o HIEMmAET BEAZ nIAEIE#HFZRI cpu burst time, -> fEshort-term schedulingEEEH
ERAANT UFeERILIsifRY, ATMIMRBZESINESEE, 33T cpu burstliHER BT
M TF—"cpu burst, EBAfEITH:

Tni1(exponential average) = at, + (1 — a)7,

o sifEEAI U Epreemptiveth AT IAEnonpreemptiveRy, MER Epreemptivefsjf schedulingfi®, BRI
FHRSMEFRA: shortest-remaining-time-first scheduling, A TX5KE 1148 T preemptivefdsjfid T
ER:

Process Arrival Time Burst Time

P, 0 8
P, 1 4
P 2 9
Py 3 5

If the processes arrive at the ready queue at the times shown and need the
indicated burst times, then the resulting preemptive SJF schedule is as depicted
in the following Gantt chart:

0 1 5 10 17 26
W0 SRAH R A RMburst time < EEEZTRRERTHONE , NENHBEMHROEEL L

Process P; is started at time 0, since it is the only process in the queue. Process
P, arrives at time 1. The remaining time for process P; (7 milliseconds) is
larger than the time required by process P, (4 milliseconds), so process P; is
preempted, and process P, is scheduled. The average waiting time for this
exampleis [(10 - 1)+ (1 —1) + (17 — 2) + (5 — 3)]/4 = 26/4 = 6.5 milliseconds.
Nonpreemptive SJF scheduling would result in an average waiting time of 7.75
milliseconds.

e Priority Scheduling: This algorithm indicates that a priority is associated with each process, and
the CPU us allocated to the process with the highest priority. Two processes with the same
priority will be allocated base on FCFS. Therefore, observe that sjf is a special case of priority
scheduling in which the "priority" it indicates is the CPU burst time. Some system use lower
number for high priority while some system use low number for low priority, it really
depends

o Internal Priority: Compute inside os, therefore priority value can only be something that is
knowable to OS such as the cpu burst time, memory requirement, number of open files...

o External Priority: Compute outside os, set by criteria outside the knowledge of os such as
how important this process is, or how much did someone pay for thi sprocess to be
exeucted, etc.

® (Can be either preemptive or nonpreemptive. For priority scheduling, one obvious problem is
Starvation, some process with low priority might be leave indefinately.

o There is a solution for that: aging, gradually increasing the priority of processes that wait in
the system for a long time.
® Round-Robin Scheduling(RR):

o Designed especially for time sharing system

o Somewhat like FCFS but with preemption

o Defined a time unit: time quantum: generally from 10 to 100 milliseconds
o

Ready queue is treated as a circular queue

o How does it work?: The CPU scheduler goes around the ready queue, allocating the CPU to
each process for a time interval of up to 1 time quantum.(Therefore, every process gets no
more than 1 time quantum)

e |f a process has a cpu burst time less than 1 time quantum: let it end; If a process has a cpu
burst time larger than 1 time quantum: it gets preempted

e wait time is often long, really depends on length of time quantum it choose: if time quantum is
long, the rr = fcfs; if time quantum is extreme small, then the RR approach is called processor
sharing and (in theory) creates the appearance that each of n processes has its own processor
running at 1/n the speed of the real processor.

e Another problem to consider is the time of context switch. If time quantum is small, we may
need more time to perform context switch

e Multilevel Queue Scheduling: This scheme partition processes into different class. Each queue
has its own scheduling algorithm. Also, there must be scheduling among the queues and it's
often being implemented as fixed-priority preemptive scheduling, following are queues for an
example scheme:

System Processes

Interactive Processes

Interactive editing Processes

Batch Processes

Student Processes

In above case, each queue has absolutely priority over lower priority queue.

Absolute Priority? -> No process in the batch queue, for example, could run unless the
queues for system processes, interactive processes, and interactive editing processes were
all empty. If an interactive editing process entered the ready queue while a batch process
was running, the batch process would be preempted.

o oA wWN 2

Message passing: Interprocess Communication(IPC)

Lecture note

® How processes communicate each other for collaboration

® One thing that need to know is that synchornization method like semaphore, monitors are
solution for processes/threads which executed on the same motherboard(share CPU and
memory)

e \What if we want processes to communicate throgh a network (not on the same computer) ->
Message Passing

O Send(): just to send information through network
O Receive(): receive information from network

® issues that can happen during communication(message passing)
o message loss: we can deal with this by receiver sending acknowledgement/reassure

o message duplication

o transfer delay

o error detection: some bits inside the message may get flipped

o process identification: processes in network need to be identified individually
o security

® authentication: message need to be sent by authented sender

= confidentiality: only receiver and sender know the message

® availability: server need to be available

= non-repudiation: need to have evidence to show the message is sent by the sender
e direct communication: Directly send message from one process to another

® [ndirect communication: Process send message to an address in between; Process get message
from the address in between

o use a mailbox, a address in between
e Type of Message Passing:

o Blocking:

m Blocking send: Sender process is blocked while the message that it has sent has not
been received
= Blocking receive: Receiver process is blocked till it receives a message
o Nonblocking:

= Nonblocking send: Sender process continue executing while the message has been
send
= Nonblocking receive: Receiver process receives a valid message or null
® rendezvous(Both sender and receiver are blocking)

® Sockets: Endpoint communication objects used to establish connections between two
processes in order to communicate over network or within localhost

O (192.168.1.10:1255) <-> (130.15.126.132:80)

o Above code is somewhat like a client and a server, server socket waits for incoming
connections from clients on a specific port; While a client socket initiates a request for a
connection with a server

e Remote Procedure Calls: A communication concept that consists of allowing a process running
on a computer A, to remotely execute a procedure by a process running on another computer B,
in the same way as if it occurred. This is just lile RMI

® So a server implements procedure and waits for clients to call this procedure, and then server
returns what it returns to clients which calls this procedure

e More specific way about this can be seen in lab6

Operating System Security

e Basic Idea: Computer resources must be guarded against Unauthorized access, malicious
destruction or alteration, and accidental introduction of inconsistency

e Notice that the secure is for the whole Infromation System

e Some terms that needed to be noted:
o Intruder/Cracker: Those attempting to breach security
o Threat: The potential for a security violation such as the discovery of a vulnerability
o Attact: The attempt to break security

m Cyberattack: Use specifically software/computer to attack
o Intrusion: Sucessful attack

o Cracker: People who just want to bypass the system, unlike hacker who actually try to
attack

e Several forms of accidental and malicious security violation:

Breach of confidentiality: Unauthorized reading of data

Breach of integrity: Unauthorized modification of data

Breach of availability: Unauthorized desturction of data

Theft of service: Unauthorized use of resource

Denial of service: Preventing legitimate use of the system, attack occurs when legitimate

O O O O O

users are unable to access information system
e Masquerading: One participant in a communictaion pretends to be someone else

e Replay Attack: The malicious or fraudulent repeat of a valid data transmission such as repeat of
a request to transfer money

® Man-in-the-middle attack: An attacker sits in the data flow of a communication, masquerading
as the sender to the receiver, and vide versa

e Safety VS Security;

o Asystem is safe if the system operates as it was intended to operate under the
circumstances for which it was designed(normal circumstances)
o Asystem is secure if the system operates as it was intended to operate under all
circumstances
® Two types of threats: Accidental/Intentional

o Notice that software bugs is counted as accidental
o There are some definition on lecture state the author of intention
® Security can be established from:

o Physical aspect: people don't have easy access to the actual device, and device is kept in
safe environment

o Social aspect: User should know the consequences of being attack: which means user don't

put password in their sticky note, i.e. User should at least protect their infromation

Application aspect: Consists of securing applications running on the system

Software aspect: Do not install untrusted software

Network aspect: Secure network traffic

OS aspect: Keep system secure: plan for backups before updates, consider update, install

anti-malware software...

O O O O

e A chain is as strong as the weakest link, and the weakest link is always the user

e Fundamental security services

o

(o]

authentication: message need to be sent by authented sender

confidentiality: only receiver and sender know the message, protect information from
being disclosed to unauthorized parties

= Symmetric Encryption: receiver use the same key(key that sender used to encrypt) to
decrypt
= Asymmetric Encription: sender use public key to encrypt, receiver use private key to
decrypt
= No-key protocol
integrity: Protect information from being modified

® So using hash functio can see whether a file has been modified
availability: server need to be available, guarantee that information system resources are
available at all time

non-repudiation: Nobody denies having done(executed, sent, received...) something in the
system

e Operating systems threats

o

(o]

Configuration & programming errors: -> buffer overflow, integer overflow

Denial of Service: flodding, mail-bombing(send a email to someone, a very large one, but
zip the file, the receiver download the zip file thought it's small then unzip the file. BOMB)

Squatting: illegal hosting(use your computer to store illegal file)

Malware: Viruses, worms, trojan, spyware...(f& %)

Spoofing: Use another IP address to do bad things, DNS spoofing

Social engineering: Too much confident, basically is just to trick you into some website

® xQy: This url takes you to y instead of x!
Boring: Spams, pop-ups, pop-unders, hoax...

Reconnaissance: Port scanning, OS fingerprinting, footprinting...(Like scan to see which
port of your computer is open)

e Malware: a program designed for causing harm to a computer system(Very concrete)

(o]

There are several difference between malware regard how they are propagated and how
they infect system in slide

Viruses: attach itself to a file/program enabling it to spread from one computer to another
Worms: Does not infect files but has the ability to duplicate itself and send a copy of itself
through the network

Trojan Horse: Comes in the form of a nicely useful software but once installed, it destroyed
your system, used to setup backdoors

Bots: run on user os(zombie), and waits for commands from a remote attacker which
controls it

(¢]

(o]

Rootkit: Installed after taking over a computer. It's used for erasing evidences to avoid
being backtracked

Ransomware: Threatens victims to publish their private data or perpetually block access to
it unless a ransome is paid

Spyware: Used to gather information about users activity over the internet

Keylogger: Used to intercept what users type on their keyboard

Backdoor: Create vulnerability on the victim system so that the attacker can come back
anytime

Pop-up: Unsolicited web windows that pops up to display an advertisement or a warning
Hoax: Jokes, false news, or bad advertisement about company

e Trap door: Piece of code inserted into a program by an insider to bypass some normal checks

® Protection tools:

(¢]

O O O O

(o]

o

Anti-virus: Detect and eliminate different types of malware: signature-based, sandbox,
behavior-based

Firewall: Barrier to filter traffic coming from and going to the Internet

Anti-spyware

Integrity Control: Compare system's intergrity with a previous state

IDS(Intrusion Detection Systems): Detect ongoing external/internal attacks and notify
system administrator

IPS(Intrusion Prevent Systems): Detect ongoing external/internal attacks and prevent it
Honypots: Collect traffic of attacker to learn from then

e Protection: a security term used to refer to the set of mechanisms used for controlling the
access of processes or users to the computer resources

(¢]

Data confidentiality: The owner of a file should be able to specify who can
read/copy/execute the file

Data integrity: The owner of a file should be able to specify who can modify the file

Data availbility: The OS should apply mechanism to make sure that nobody can disturb the
system to make it unusable

User privacy: The OS protects individuals from misuse of information about them

User authentication

System reliability: The OS should apply mechanisms to provide fault tolerance an high
reliability.

Buffer Overflow

® |s an attack that exploits a bug in a program to cause the bugged program jump to an arbitary
program for execution(arbitary program is usually generated by malicious program)

e Two types of buffer overflow

o

Overflow on the stack

m Sending more data than the program expects and force it to overwrite the return address
on the stack with the address of an exploit code(a.k.a shellcode), so that the PC register will
get this address, the wrong one and start its execution

m This is happening because C compiler does bound checking

m Stack is used to handle interrupt, function call, when we call a function, there will be a
"function stack frame" fro storing local variables in that function. and there is a return
address reerence pointer. Base pointer is used to refer stuff in this frame. There is a
concrete definition on slide.

= FRAbpREARE, ILREREEITHRME, 8EEZIE—1functionflstack frame, ERHEE
4 Bhandlerz £MARA, H— PN EEHRITHREBITHRONER, HITT—TRE, T—
PTRENTTRZE, FEFECEZEIHATAIRE, BAR TR ZBHATIERE, Mo
BA M pointerigma Z AIMITHIRER, X pointerfidbp, & Mfunction callfgfunction
stack framed#E—"bp, MbpEEMEFHEIXMunction callZFiAgfunctionflstack
frameRgbase address(old frame pointer)

o Overflow on the heap

= Consists of overwriting a command on the heap to execute an arbitary malicious
command
® Heap is a memory segment allocated by the OS to each program in order to perform
dynamic allocation during runtime
Integer Overflow:

o Occurs when the variable type int is used instead of unsigned_int. It allows an attacker to
use values that are not allowed but still getting access to some resources
Shellcode: a string that express a binary program that starts a shell interpreter. It's given as an
input to a program to be copied into a buffer in such a way it overwrites what is beyond the
buffer bound, in particular thet return address from a function call.

payload: ¥8MIZE T AIZFEEvulunerablefiz %

o shellcode in payload
Mechanism for preventing buffer overflow:

o stack samshing prevention

» BEEStackFBRARENGRA, B RBTAITRAERBERES, URMKEST
AR B buffer overflowZE &4 -> ABORT
o disallow execution of code in a stack section of memory

o detect a sequence of NOP

o detect sequence such as /bin/bash or /bin/sh

	Lecture 01
	Lecture 02
	Hardware and software in computer systems
	Memory Unit
	CPU Unit（Processor）*
	Single and Multiple-processors System
	Instruction Execution Cycle
	可以补充看看I/O structure pg12*

	Lecture 03 & Lecture 04 & Lecture 05
	Processes（进程）
	PCB(Process Context Blocks)
	Interrupt
	Context Switching

	Lecture 06
	Threads
	DMA

	Lecture 07 & Lecture 08 & Lecture 09
	Introduce the critical section problem and process synchronization
	Introduce software and hardware solutions for critical-section problem
	Semaphore
	Peterson's Algorithm
	Hardware solutions for Critical section

	Examine some well-know classical process synchronization problems

	Lecture 10-Partial
	Process Precedence Graph for synchronization

	Lecture 12&Lecture 13&Lecture 14&Lecture 15
	Deadlock
	Preemption（抢占）

	Lecture 16 & Lecture 19
	Basic Hardware
	Address Binding（位址定位）
	Logical Versus Physical Address Space
	Dynamic Loading动态加载
	Dynamic Linking and Shared Libraries
	Swapping
	Memory Mapping and Protection
	Memory Allocation
	Fragmentation

	Lecture 20 & Lecture 21
	Paging（分页）
	Hardware Support
	TLB（Translation Look-aside buffer（TLB））

	Lecture 22
	Protection
	Shared Pages
	Hierarchical Paging
	Segmentation

	Lecture 23
	Segmentation with paging

	Lecture 24
	Virtual Memory
	Page replacement
	Side topic: BUFFER(缓冲) vs CACHE(缓存)

	Thrashing
	Monitors for synchronization

	CPU Scheduling
	CPU Scheduler
	Preemptive Scheduling
	Scheduling Criteria
	Scheduling Algorithms

	Message passing: Interprocess Communication(IPC)
	Lecture note
	Operating System Security

	Buffer Overflow

