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Chapter 1

Security Concepts and Principles

Our subject area is computer and Internet security—the security of software, comput-
ers and computer networks, and of information transmitted over them and files stored on
them. Here the term computer includes programmable computing/communications de-
vices such as a personal computer or mobile device (e.g., laptop, tablet, smartphone), and
machines they communicate with including servers and network devices. Servers include
front-end servers that host web sites, back-end servers that contain databases, and inter-
mediary nodes for storing or forwarding information such as email, text messages, voice,
and video content. Network devices include firewalls, routers and switches. Our interests
include the software on such machines, the communications links between them, how
people interact with them, and how they can be misused by various agents.

We first consider the primary objectives or fundamental goals of computer security.
Many of these can be viewed as security services provided to users and other system com-
ponents. Later in this chapter we consider a longer list of design principles for security,
useful in building systems that deliver such services.

1.1 Fundamental goals of computer security

We define computer security as the combined art, science and engineering practice of pro-
tecting computer-related assets from unauthorized actions and their consequences, either
by preventing such actions or detecting and then recovering from them. Computer secu-
rity aims to protect data, computer hardware and software plus related communications
networks, and physical-world devices and elements they control, from intentional misuse
by unauthorized parties—i.e., access or control by entities other than the legitimate own-
ers or their authorized agents. Mechanisms protecting computers against unintentional
damage or mistakes, or that fall under the categories of reliability and redundancy, are
also at times essential for overall computer security, but are not our main focus herein.

The overall goal of computer security is to support computer-based services by pro-
viding security properties that help deliver on expectations. We begin by discussing the
main properties of interest.
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Figure 1.1: Six high-level computer security goals (properties delivered as a service).
Icons denote end-goals. Important supporting mechanisms are shown in rectangles.

1) confidentiality: the property of non-public information remaining accessible only to
authorized parties, whether stored (at rest) or in transit (in motion). This is supported
by access control (below), including mechanisms enforced by an operating system. A
common technical means, data encryption, involves keyed cryptographic algorithms;
access to a secret key allows recovery of meaningful information from encrypted data.
Confidentiality can also be provided by procedural means, e.g., by allowing offline
storage media to be physically accessed only by authorized individuals.

2) integrity: the property of data, software or hardware remaining unaltered, except by
authorized parties. While error detection and error correction codes address some be-
nign errors (including in hardware), access controls and cryptographic checksums are
used to combat malicious integrity violations. The integrity of people (to resist bribery,
blackmail, coercion) is a different use of this word, but is related and important.

3) authorization (authorized access): the property of computing resources being accessi-
ble only by authorized entities, e.g., those approved by the resource owner or domain
administrator. Authorized access is achieved through access control mechanisms,
which restrict access to physical devices, software services, and information.

4) availability: the property of information, services and computing resources remaining
accessible for authorized use. Aside from reliable hardware and software, this requires
protection from intentional deletion and disruption, including denial of service attacks
aiming to overwhelm resources.

In discussing security, the agents representing users, communicating entities, or system
processes are called principals. A principal has associated privileges specifying the re-
sources it is authorized to access. The identity of a principal is thus important—but as-
serted identities must be verified. This leads to the following two further goals.

5) authentication: assurance that a principal, data, or software is genuine relative to ex-
pectations arising from appearances or context. Entity authentication provides as-
surances that the identity of a principal involved in a transaction is as asserted; this
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supports authorization (above). Data origin authentication (which may be shortened
to: data authentication) provides assurances that the source of data or software is as
asserted; it also implies data integrity (above). Note that data modification by an entity
other than the original source changes the source. Authentication supports attribu-
tion—indicating to whom an action can be ascribed—and thus accountability.

6) accountability: the ability to identify principals responsible for past actions. As the
electronic world lacks conventional evidence (e.g., paper trails, human memory of
observed events), accountability is achieved by transaction evidence or logs recorded
by electronic means, including identifiers of principals involved, such that principals
cannot later credibly deny (repudiate) previous commitments or actions.

TRUSTED VS. TRUSTWORTHY. We carefully distinguish the terms trusted and trust-
worthy as follows. Something is trustworthy if it deserves our confidence, i.e., will reliably
meet expectations. Something trusted has our confidence, whether deserved or not; so a
trusted component is relied on to meet expectations, but if it fails then all guarantees are
lost. For example, if we put money in a bank, we trust the bank to return it. A bank that
has, over 500 years, never failed to return deposits would be considered trustworthy; one
that goes bankrupt after ten years may have been trusted, but was not trustworthy.

CONFIDENTIALITY VS. PRIVACY, AND ANONYMITY. Confidentiality involves in-
formation protection to prevent unauthorized disclosure. A related term, privacy (or infor-
mation privacy), more narrowly involves personally sensitive information, protecting it,
and controlling how it is shared. An individual may suffer anxiety, distress, reputational
damage, discrimination, or other harm upon release of their home or email address, phone
number, health or personal tax information, political views, religion, sexual orientation,
consumer habits, or social acquaintances. What information should be private is often a
personal choice, depending on what an individual desires to selectively release. In some
cases, privacy is related to anonymity—the property that one’s actions or involvement are
not linkable to a public identity. While neither privacy nor anonymity is a main focus of
this book, many of the security mechanisms we discuss are essential to support both.

1.2 Computer security policies and attacks

Consider the statement: This computer is secure. Would you and a friend independently
write down the same thing if asked to explain what this means? Unlikely. How about:
This network is secure. This web site is secure. This protocol is provably secure. Again,
unlikely. To remove ambiguity—ambiguity is security’s enemy—we need more precise
definitions, and a richer vocabulary of security-specific terminology.

ASSETS, POLICY. Computer security protects resources or assets: information, soft-
ware, hardware, and computing and communications services. Computer-based data ma-
nipulation allows control of many physical-world resources such as financial assets, phys-
ical property, and infrastructure. Security is formally defined relative to a security policy,
which specifies the design intent of a system’s rules and practices—what is, and is not
(supposed to be) allowed. The policy may explicitly specify assets requiring protection;
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specific users allowed to access specific assets, and the allowed means of access;1 secu-
rity services to be provided; and system controls that must be in place. Ideally, a system
enforces the rules implied by its policy. Depending on viewpoint and methodology, the
policy either dictates, or is derived from, the system’s security requirements.

THEORY, PRACTICE. In theory, a formal security policy precisely defines each pos-
sible system state as either authorized (secure) or unauthorized (non-secure). Non-secure
states may bring harm to assets. The system should start in a secure state. System ac-
tions (e.g., related to input/output, data transfer, or accessing ports) cause state transi-
tions. A security policy is violated if the system moves into an unauthorized state. In
practice, security policies are often informal documents including guidelines and expec-
tations related to known security issues. Formulating precise policies is more difficult and
time-consuming. Their value is typically under-appreciated until security incidents occur.
Nonetheless, security is defined relative to a policy, ideally in written form.

ATTACKS, AGENTS. An attack is the deliberate execution of one of more steps in-
tended to cause a security violation, such as unauthorized control of a client device. At-
tacks exploit specific system characteristics called vulnerabilities, including design flaws,
implementation flaws, and deployment or configuration issues (e.g., lack of physical iso-
lation, ongoing use of known default passwords, debugging interfaces left enabled). The
source or threat agent behind a potential attack is called an adversary, and often called an
attacker once a threat is activated into an actual attack. Figure 1.2 illustrates these terms.

target	
asset	
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a)	A	policy	viola5on	results	in	an	insecure	state.		
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Figure 1.2: Security policy violations and attacks. a) A policy violation results in a non-
secure state. b) A threat agent becomes active by launching an attack, aiming to exploit a
vulnerability through a particular attack vector.

THREAT. A threat is any combination of circumstances and entities that might harm
assets, or cause security violations. A credible threat has both capable means and inten-
tions. The mere existence of a threat agent and a vulnerability that they have the capability
to exploit on a target system does not necessarily imply that an attack will be instanti-
ated in a given time period; the agent may fail to take action, e.g., due to indifference
or insufficient incentive. Computer security aims to protect assets by mitigating threats,
largely by identifying and eliminating vulnerabilities, thereby disabling viable attack vec-
tors—specific methods, or sequences of steps, by which attacks are carried out. Attacks
typically have specific objectives, such as: extraction of strategic or personal information;

1For example, corporate policy may allow authorized employees remote access to regular user accounts
via SSH (Chapter 10), but not remote access to a superuser or root account. A password policy (Chapter 3)
may require that passwords have at least 10 characters including two non-alphabetic characters.
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disruption of the integrity of data or software (including installation of rogue programs);
remotely harnessing a resource, such as malicious control of a computer; or denial of ser-
vice, resulting in blocked access to system resources by authorized users. Threat agents
and attack vectors raise the questions: secure against whom, from what types of attacks?

CONTROLS. A security policy helps in determining when a security violation has
occurred, but by itself does not preclude such violations. To support and enforce secu-
rity policies—that is, to prevent violations, or detect violations in order to react to limit
damage, and recover—controls and countermeasures are needed. These include opera-
tional and management processes, operating system enforcement by software monitors
and related access control measures, and other security mechanisms—technical means of
enforcement involving specialized devices, software techniques, algorithms or protocols.

Example (House security policy). To illustrate this terminology with a non-technical
example, consider a simple security policy for a house: no one is allowed in the house
unless accompanied by a family member, and only family members are authorized to
remove physical objects from the house. An unaccompanied stranger in the house is a
security violation. An unlocked back door is a vulnerability. A stranger (attacker) entering
through such a door, and removing a television, amounts to an attack. The attack vector is
entry through the unlocked door. A threat here is the existence of an individual motivated
to profit by stealing an asset and selling it for cash.

1.3 Risk, risk assessment, and modeling expected losses

Most large organizations are obligated, interested, or advised to understand the losses
that might result from security violations. This leads to various definitions of risk and
approaches to risk assessment. In our context, we define risk as the expected loss due to
harmful future events, relative to an implied set of assets and over a fixed time period. Risk
depends on threat agents, the probability of an attack (and of its success, which requires
vulnerabilities), and expected losses in that case. Risk assessment involves analyzing these
factors in order to estimate risk. The idealistic goal of quantitative risk assessment is to
compute numerical estimates of risk; however for reasons discussed below, precise such
estimates are rarely possible in practice. This motivates qualitative risk assessment, with
the more realistic goal of comparing risks relative to each other and ranking them, e.g., to
allow informed decisions on how to prioritize a limited defensive budget across assets.

RISK EQUATIONS. Based on the above definition of risk, a popular risk equation is:

R = T ·V ·C (1.1)

T reflects threat information (essentially, the probability that particular threats are instan-
tiated by attackers in a given period). V reflects the existence of vulnerabilities. C re-
flects asset value, and the cost or impact of a successful attack. Equation (1.1) highlights
the main elements in risk modeling and obvious relationships—e.g., risk increases with
threats (and with the likelihood of attacks being launched); risk requires the presence of a
vulnerability; and risk increases with the value of target assets. See Figure 1.3.
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Figure 1.3: Risk equation. Intangible costs may include corporate reputation.

Equation (1.1) may be rewritten to combine T and V into a variable P denoting the
probability that a threat agent takes an action that successfully exploits a vulnerability:

R = P ·C (1.2)

Example (Risk due to lava flows). Most physical assets are vulnerable to damage
from hot lava flows, but the risk vanishes if there are no volcanos nearby. Equation (1.1)
reflects this: even if V = 1 and C = $100 million, the risk R equals 0 if T = 0. Most assets,
however, are subject to other threats aside from hot lava flows.

ESTIMATING UNKNOWNS. Risk assessment requires expertise and familiarity with
specific operating environments and the technologies used therein. Individual threats are
best analyzed in conjunction with specific vulnerabilities exploited by associated attack
vectors. The goal of producing precise quantitative estimates of risk raises many ques-
tions. How do we accurately populate parameters T , V and C? Trying to combine distinct
threats into one value T is problematic—there may be countless threats to different assets,
with the probabilities of individual threats depending on the agents behind each (adversary
models are discussed shortly). Looking at (1.1) again, note that risk depends on combina-
tions of threats (threat sources), vulnerabilities, and assets; for a given category of assets,
the overall risk R is computed by summing across combinations of threats and vulnerabil-
ities. A side note is that the impact or cost C relative to a given asset varies depending on
the stakeholder. (For a given stakeholder, one could consider, for each asset or category
of assets, the set E of events that may result in a security violation, and evaluate R = R(e)
for each e ∈ E or for disjoint subsets E ⊆ E ; this would typically require considering
categories of threats or threat agents.) Indeed, computing R numerically is challenging
(more on this below).

MODELING EXPECTED LOSSES. Nonetheless, to pursue quantitative estimates, not-
ing that risk is proportional to impact per event occurrence allows a formula for annual
loss expectancy, for a given asset:

ALE =
n

∑
i=1

Fi ·Ci (1.3)

Here the sum is over all security events modeled by index i, which may differ for different
types of assets. Fi is the estimated annualized frequency of events of type i (taking into
account a combination of threats, and vulnerabilities that enable threats to translate into
successful attacks). Ci is the average loss expected per occurrence of an event of type i.

RISK ASSESSMENT QUESTIONS. Equations 1.1–1.3 bring focus to some questions
that are fundamental not only in risk assessment, but in computer security in general:
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1. What assets are most valuable, and what are their values?
2. What system vulnerabilities exist?
3. What are the relevant threat agents and attack vectors?
4. What are the associated estimates of attack probabilities, or frequencies?

COST-BENEFIT ANALYSIS. The cost of deploying security mechanisms should be
accounted for. If the total cost of a new defense exceeds the anticipated benefits (e.g.,
lower expected losses), then the defense is unjustifiable from a cost-benefit analysis view-
point. ALE estimates can inform decisions related to the cost-effectiveness of a defensive
countermeasure—by comparing losses expected in its absence, to its own annualized cost.

Example (Cost-benefit of password expiration policies). If forcing users to change
their passwords every 90 days reduces monthly company losses (from unauthorized ac-
count access) by $1000, but increases monthly help-desk costs by $2500 (from users being
locked out of their accounts as a result of forgetting their new passwords), then the cost
exceeds the benefit before even accounting for usability costs such as end-user time.

RISK ASSESSMENT CHALLENGES. Quantitative risk assessment may be suited to
incidents that occur regularly, but not in general. Rich historical data and stable statistics
are needed for useful failure probability estimates—and these exist over large samples,
e.g., for human life expectancies and time-to-failure for incandescent light bulbs. But for
computer security incidents, relevant such data on which to base probabilities and asset
losses is both lacking and unstable, due to the infrequent nature of high-impact security
incidents, and the uniqueness of environmental conditions arising from variations in host
and network configurations, and in threat environments. Other barriers include:

• incomplete knowledge of vulnerabilities, worsened by rapid technology evolution;
• the difficulty of quantifying the value of intangible assets (strategic information, cor-

porate reputation); and
• incomplete knowledge of threat agents and their adversary classes (Sect. 1.4). Ac-

tions of unknown intelligent human attackers cannot be accurately predicted; their
existence, motivation and capabilities evolve, especially for targeted attacks.

Indeed for unlikely events, ALE analysis (see above) is a guessing exercise with little ev-
idence supporting its use in practice. Yet, risk assessment exercises still offer benefits—
e.g., to improve an understanding of organizational assets and encourage assigning values
to them, to increase awareness of threats, and to motivate contingency and recovery plan-
ning prior to losses. The approach discussed next aims to retain the benefits while avoiding
inaccurate numerical estimates.

QUALITATIVE RISK ASSESSMENT. As numerical values for threat probabilities (and
impact) lack credibility, most practical risk assessments are based on qualitative ratings
and comparative reasoning. For each asset or asset class, the relevant threats are listed;
then for each such asset-threat pair, a categorical rating such as (low, medium, high) or
perhaps ranging from very low to very high, is assigned to the probability of that threat
action being launched-and-successful, and also to the impact assuming success. The com-
bination of probability and impact rating dictates a risk rating from a combination matrix
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C (cost or impact) P (probability )
V.LOW LOW MODERATE HIGH V.HIGH

V.LOW (negligible) 1 1 1 1 1
LOW (limited) 1 2 2 2 2
MODERATE (serious) 1 2 3 3 3
HIGH (severe or catastrophic) 2 2 3 4 4
V.HIGH (multiply catastrophic) 2 3 4 5 5

Table 1.1: Risk Rating Matrix. Entries give coded risk level 1 to 5 (V.LOW to V.HIGH) as
a qualitative alternative to equation (1.2). V. denotes VERY; C is the anticipated adverse
effect (level of impact) of a successful attack; P is the probability that an attack both
occurs (a threat is activated) and successfully exploits a vulnerability.

such as Table 1.1. In summary, each asset is identified with a set of relevant threats, and
comparing the risk ratings of these threats allows a ranking indicating which threat(s) pose
the greatest risk to that asset. Doing likewise across all assets allows a ranked list of risks
to an organization. In turn, this suggests which assets (e.g., software applications, files,
databases, client machines, servers and network devices) should receive attention ahead
of others, given a limited computer security budget.

RISK MANAGEMENT VS. MITIGATION. Not all threats can (or necessarily should)
be eliminated by technical means alone. Risk management combines the technical activity
of estimating risk or simply identifying threats of major concern, and the business activity
of “managing” the risk, i.e., making an informed response. Options include (a) mitigat-
ing risk by technical or procedural countermeasures; (b) transferring risk to third parties,
through insurance; (c) accepting risk in the hope that doing so is less costly than (a) or
(b); and (d) eliminating risk by decommissioning the system.

1.4 Adversary modeling and security analysis

An important part of any computer security analysis is building out an adversary model,
including identifying which adversary classes a target system aims to defend against—a
lone gunman on foot calls for different defenses than a battalion of tanks supported by a
squadron of fighter planes.

ADVERSARY ATTRIBUTES. Attributes of an adversary to be considered include:

1. objectives—these often suggest target assets requiring special protection;

2. methods—e.g., the anticipated attack techniques, or types of attacks;

3. capabilities—computing resources (CPU, storage, bandwidth), skills, knowledge, per-
sonnel, opportunity (e.g., physical access to target machines);

4. funding level—this influences attacker determination, methods and capabilities; and

5. outsider vs. insider—an attack launched without any prior special access to the tar-
get network is an outsider attack. In contrast, insiders and insider attacks originate



10 Chapter 1. Security Concepts and Principles

Named Groups of Adversaries
1 foreign intelligence (including government-funded agencies)
2 cyber-terrorists or politically-motivated adversaries
3 industrial espionage agents (perhaps funded by competitors)
4 organized crime (groups)
5 lesser criminals and crackers† (i.e., individuals who break into computers)
6 malicious insiders (including disgruntled employees)
7 non-malicious employees (often security-unaware)

Table 1.2: Named groups of adversaries. †The popular media uses the term hackers,
which others use for computer system experts knowledgeable about low-level details.

from parties having some starting advantage, e.g., employees with physical access or
network credentials as legitimate users.

The line between outsiders and insiders can be fuzzy, for example when an outsider some-
how gains access to an internal machine and uses it to attack further systems.

SCHEMAS. Various schemas are used in modeling adversaries. A categorical schema
classifies adversaries into named groups, as given in Table 1.2. A capability-level schema
groups generic adversaries based on a combination of capability (opportunity and re-
sources) and intent (motivation), say from Level 1 to 4 (weakest to strongest). This may
also be used to sub-classify named groups. For example, intelligence agencies from the
U.S. and China may be in Level 4, insiders could range from Level 1 to 4 based on their
capabilities, and novice crackers may be in Level 1. It is also useful to distinguish tar-
geted attacks aimed at specific individuals or organizations, from opportunistic attacks or
generic attacks aimed at arbitrary victims. Targeted attacks may either use generic tools
or leverage target-specific personal information.

SECURITY EVALUATIONS AND PENETRATION TESTING. Some government de-
partments and other organizations may require that prior to purchase or deployment, prod-
ucts be certified through a formal security evaluation process. This involves a third party
lab reviewing, at considerable cost and time, the final form of a product or system, to
verify conformance with detailed evaluation criteria as specified in relevant standards; as
a complication, recertification is required once even the smallest changes are made. In
contrast, self-assessments through penetration testing (pen testing) involve customers or
hired consultants (with prior permission) finding vulnerabilities in deployed products by
demonstrating exploits on their own live systems; interactive and automated toolsets run
attack suites that pursue known design, implementation and configuration errors compiled
from previous experience. Traditional pen testing is black-box, i.e., proceeds without use
of insights from design documents or source code; use of such information (making it
white-box) increases the chances of finding vulnerabilities and allows tighter integration
with overall security analysis. Note that tests carried out by product vendors prior to prod-
uct release, including common regression testing, remain important but cannot find issues
arising from customer-specific configuration choices and deployment environments.
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Figure 1.4: Security analysis and the software development lifecycle. The goal is to
provide confidence in a system’s ability to resist attacks, including by direct testing against
known attacks. For a complementary view of security analysis, see Figure 1.10.

SECURITY ANALYSIS. Our main interest in security analysis is as in the informal
phrase “carrying out a security analysis”, by any methodology. The primary aim is to
identify vulnerabilities related to design, and overlooked threats; analysis ideally begins
early in a product’s lifecycle, and continues in parallel with design and implementation
(Fig. 1.4). Techniques including manual source code review and security review of de-
sign documents can uncover vulnerabilities not apparent through black-box testing alone.
A secondary aim is to suggest ways to improve defenses when weaknesses are found.
The term vulnerability assessment (Chapter 11) refers to identifying weaknesses in de-
ployed systems, including by pen testing; security analysis, broadly viewed, includes this.
Traditional security analysis considers a system’s architectural features and components,
identifies where protection is needed, and details how existing designs meet security re-
quirements. Ideally this takes into account a specific target deployment environment with
relevant assumptions and threats, as identified by threat modeling (Section 1.5), the cor-
nerstone of security analysis. The analysis should trace how existing or planned defense
mechanisms address identified threats, and note threats that remain unmitigated.

SECURITY MODELS. Security analysis may be aided by building an abstract security
model, which relates system components to parts of a security policy to be enforced; the
model may then be explored to increase confidence that system requirements are met.
Such models can also be designed prior to defining policies. Security analysis benefits
strongly from experience, including insights from design principles that suggest things to
look for, and to avoid, in the design of security-minded products and systems.

1.5 Threat modeling: diagrams, trees, lists and STRIDE

A threat model identifies threats, threat agents, and attack vectors that the target system
considers in scope to defend against—known from the past, or anticipated. Those con-
sidered out of scope should be explicitly recorded as such. Threat modeling takes into
account adversary modeling (Section 1.4), and should identify and consider all assump-
tions made about the target system, environment, and attackers. Threat modeling can be
done by several different approaches (Figure 1.5), as discussed in the subsections below.
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Ch.1.		Threat	modeling	approaches.	
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Figure 1.5: Examples of threat modeling approaches.

1.5.1 Diagram-driven threat modeling

A visual approach to threat modeling starts with an architectural representation of the
system to be built or analyzed. Draw a diagram (e.g., Figure 1.6) showing target-system
components and all communications links used for data flows between them. Identify
and mark system gateways where system controls restrict or filter communications. Use
these to delimit what might informally be called trust domains. For example, if users log
in to a server, or the communication path is forced through a firewall gateway, draw a
colored rectangle around the server and interior network components to denote that this
area has different trust assumptions associated with it (e.g., users within this boundary
are authenticated, or data within this boundary has passed through a filter). Now ask how
your trust assumptions, or expectations of who controls what, might be violated. Focus on
each component, link and domain in turn. Ask: “Where can bad things happen? How?”

Add more structure and focus to this process by turning the architectural diagram into
an informal data flow diagram: trace the flow of data through the system for a simple
task, transaction, or service. Examining this, again ask: “What could go wrong?” Then
consider more complex tasks, and eventually all representative tasks.

Consider user workflow: trace through user actions from the time a task begins until
it ends. Begin with common tasks. Move to less frequent tasks, e.g., account creation or
registration (de-registration), installing, configuring and upgrading software (also aban-
doning, uninstalling). Consider full lifecycles of data, software, accounts (Figure 1.7).

Revisit your diagram and highlight where sensitive data files are stored—on servers,
user devices? Double-check that all authorized access paths to this data are shown. (Are
there other possibilities, e.g., access from non-standard paths? How about from backup

Ch.10.	Firewall	architecture	including	DMZ	(perimeter	network).	Two	screening	routers	are	
used,	one	internet-facing	and	one	internal.		The	GW	firewall	proxy/host	could	be	the	GW	in	
the	filter	rules	Table	1,	most	exposed	so	should	be	basIon	host.		A	host	(5)	may	connect	to	
Internet	services	by	proxy	through	GW,	and	possibly	directly	through	the	exterior	router	(1)	
for	outgoing	connecIons	only	on	a	reduced	set	of	packet-filtered	protocols.		
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Figure 1.6: Starting point for diagram-driven threat modeling (example). This firewall
architecture diagram reappears in Chapter 10, where its components are explained.
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Ch.1.	Password	lifecycle	analysis.	If	the	primary	authen9ca9on	
means	was	biometric,	a	fallback	mechanism	would	also	be	
included,	presen9ng	addi9onal	a>ack	surface	for	analysis.	
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Figure 1.7: Password-authenticated account lifecycle. Lifecycle diagrams help in threat
modeling. When primary user authentication involves biometrics (Chapter 3), a fallback
mechanism is also typically required, presenting additional attack surface for analysis.

media, or cloud storage?) Revisiting your diagram, add in the locations of all authorized
users, and the communications paths they are expected to use. (Your diagram is becoming
a bit crowded, you say? Redraw pictures as necessary.) Are any paths missing—how
about users logging in by VPN from home offices? Are all communications links shown,
both wireline and wireless? Might an authorized remote user gain access through a Wi-Fi
link in a café, hotel or airport—could that result in a middle-person scenario (Chapter 4),
with data in the clear, if someone nearby has configured a laptop as a rogue wireless access
point that accepts and then relays communications, serving as a proxy to the expected
access point? Might attackers access or alter data that is sent over any of these links?

Revisit your diagram again. (Is this sounding familiar?) Who installs new hardware,
or maintains hardware? Do consultants or custodial staff have intermittent access to of-
fices? The diagram is just a starting point, to focus attention on something concrete. Sug-
gestions serve to cause the diagram to be looked at in different ways, expanded, or refined
to lower levels of detail. The objective is to encourage semi-structured brainstorming, get
a stream of questions flowing, and stimulate free thought about possible threats and attack
vectors—beyond staring at a blank page. So begins threat modeling, an open-ended task.

1.5.2 Attack trees for threat modeling

Attack trees are another useful threat modeling tool, especially to identify attack vectors.
A tree starts with a root node at the top, labeled with an overall attack goal (e.g., enter a
house). Lower nodes break out alternative ways to reach their parent’s goal (e.g., enter
through a window, through a door, tunnel into the basement). Each may similarly be
broken down further (e.g., open an unlocked window, break a locked window). Each
internal node is the root of a subtree whose children specify ways of reaching it. Subtrees
end in leaf nodes. A path connecting a leaf node to the root lists the steps (attack vector)
composing one full attack; intermediate nodes may detail prerequisite steps, or classify
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Ch.1.		A'ack	tree.	
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Figure 1.8: Attack tree. An attack vector is a full path from root to leaf.

different vectors. Multiple children of a node (Fig. 1.8) are by default distinct alternatives
(logical OR nodes); however, a subset of nodes at a given level can be marked as an
AND set, indicating that all are jointly necessary to meet the parent goal. Nodes can be
annotated with various details—e.g., indicating a step is infeasible, or by values indicating
costs or other measures. The attack information captured can be further organized, often
suggesting natural classifications of attack vectors into known categories of attacks.

The main output is an extensive (but usually incomplete) list of possible attacks, e.g.,
Figure 1.9. The attack paths can be examined to determine which ones pose a risk in the
real system; if the circumstances detailed by a node are for some reason infeasible in the
target system, the path is marked invalid. This helps maintain focus on the most relevant
threats. Notice the asymmetry: an attacker need only find one way to break into a system,
while the defender (security architect) must defend against all viable attacks.

An attack tree can help in forming a security policy, and in security analysis to check
that mechanisms are in place to counter all identified attack vectors, or explain why par-
ticular vectors are infeasible for relevant adversaries of the target system. Attack vectors
identified may help determine the types of defensive measures needed to protect specific
assets from particular types of malicious actions. Attack trees can be used to prioritize
vectors as high or low, e.g., based on their ease, and relevant classes of adversary.

The attack tree methodology encourages a form of directed brainstorming, adding
structure to what is otherwise an ad hoc task. The process benefits from a creative mind.
It requires a skill that improves with experience. The process is also best used iteratively,
with a tree extended as new attacks are identified on review by colleagues, or merged
with trees independently constructed by others. Attack trees motivate security architects
to “think like attackers”, to better defend against them.

Example (Enumerating password authentication attacks). To construct a list of at-
tacks on password authentication, one might draw a data flow diagram showing a pass-
word’s end-to-end paths, then identify points where an attacker might try to extract infor-
mation. An alternative approach is to build an attack tree, with root goal to gain access
to a user’s account on a given system. Which method is used is a side detail towards the
desired output: a list of potential attacks to consider further (Figure 1.9).

‡Exercise (Free-lunch attack tree). Read the article by Mauw [12], for a fun example
of an attack tree. As supplementary reading see attack-defense trees by Kordy [10].
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Ch.1.		A'acks	on	password-based	authen7ca7on.	This	may	be	viewed	as	a	list	or	tree.		
Defini7ons	of	terms	and	details	of	techniques	are	explained	in	later	chapters.	
%	phishing	example	need	not	involve	MITM;	middle-person/proxy	might	be	via	pharming	
%	both	types	of	guessing	a'acks	could	involve	dic7onary	a'acks	
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Figure 1.9: Attacks on password-based authentication. Such a list may be created by
diagram-driven approaches, attack trees, or other methods. Terms and techniques in this
chart are explained in later chapters, including discussion of passwords in Chapter 3.

‡Exercise (Recovering screen content). Build an attack tree with goal to extract data
shown on a target device display. Consider two cases: desktop and smartphone screens.

1.5.3 Other threat modeling approaches: checklists and STRIDE

ATTACK/THREAT CHECKLISTS. While diagram-driven threat modeling and attack trees
are fairly free-form, and at best semi-structured, at the other end of the spectrum is the
idea of consulting fixed attack checklists, drawn up over time from past experience by
larger communities, and accompanied by varying levels of supporting detail.

Advantages of this are that extensive such checklists exist; their thorough nature can
help ensure that well-known threats are not overlooked by ad hoc processes; and compared
to previously mentioned approaches, they may require less experience or provide better
learning opportunities. Disadvantages are that such pre-constructed generic lists contain
known attacks in generalized terms, without taking into account unique details and as-
sumptions of the target system and environment in question—they may thus themselves
overlook threats relevant to particular environments and designs; long checklists risk be-
coming tedious, replacing a security analyst’s creativity with boredom; and their length
may distract attention away from higher-priority threats. Checklists are perhaps best used
as a complementary tool, or in a hybrid method as a cross-reference when pursuing a
diagram-driven approach.

STRIDE. Another approach uses a small set of keywords to stimulate thought, un-
burdened by a longer list. A specific such method is STRIDE (Section 1.9 gives citations).
This acronym is a memory aid for recalling the following six categories of threats:
• Spoofing—attempts to impersonate a thing (e.g., web site), or an entity (e.g., user).
• Tampering—unauthorized altering, e.g., of code, stored data, transmitted packets.
• Repudiation—denying responsibility for past actions.
• Information disclosure—unauthorized release of data.
• Denial of service—impacting availability of services, or the quality of services, through

malicious actions that consume resources or induce errors in systems.
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• Escalation of privilege—obtaining privileges to access resources, typically referring to
malware that gains a base level of access as a foothold and then exploits vulnerabilities
to extend this to gain greater access.

While these six categories are not definitive or magical, they are useful in that most threats
can be associated with one of these categories. The idea is to augment the diagram-driven
approach by considering, at each point where the question “Where can things break?” is
asked, whether any of these six categories of problems might occur. STRIDE thus offers
another way to stimulate open-ended thought while looking at a diagram and trying to
identify threats to architectural components—in this case, guided by six keywords.

1.6 Model-reality gaps and real-world outcomes

We consider why threat modeling is difficult, before returning to check that what we have
discussed helps deliver on the goals set out in defining security policies.

1.6.1 Threat modeling and model-reality gaps

Threat modeling is tricky. An example illustrates the challenge of anticipating threats.
Example (Hotel safebox). You check into a hotel in a foreign country. You do not

speak the language well. The hotel staff appears courteous, but each time you visit the
lobby it seems a different face is behind the front desk. Your room has a small safe, the
electronic type with its door initially open (unlocked), allowing guests at that point to
choose their own combination. Upon three incorrect attempted combinations, the safe
enters a lockout mode requiring hotel maintenance to reset it. You choose a combination,
remember it, stash your money, close the box, then go swimming. Is your money secure?
The natural assumption is that a thief, trying to open the lock by guessing your combina-
tion, will with high probability guess wrong three times, leaving your money safe inside.
But, do you trust the hotel staff? Someone in maintenance must know the reset or master
combination to allow for hotel guests who either forget their combination or enter three
wrong tries. If you return and the money is gone, do you trust the hotel maintenance staff
to help you investigate? Can you trust the hotel management? And the local police—are
they related to hotel staff or the owner? (What implicit assumptions have you made?)

QUALITY OF A THREAT MODEL. A threat model’s quality, with respect to pro-
tecting a particular system, depends on how accurately the model reflects details of that
system and its operating environment. A mismatch between model and reality can give a
dangerously false sense of security. Some model-reality gaps arise due to the abstraction
process inherent in modeling—it is difficult for a high-level, abstract model to encapsulate
all technical details of a system, and details are important in security. Major gaps often
arise from two related modeling errors:

1. invalid assumptions (often including misplaced trust); and

2. focus on the wrong threats.
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Both can result from failing to adapt to changes in technology and attack capabilities.
Model assumptions can also be wrong, i.e., fail to accurately represent a target system, due
to incomplete or incorrect information, over-simplification, or loss of important details
through abstraction. Another issue is failure to record assumptions explicitly—implicit
assumptions are rarely scrutinized. Focusing attention on the wrong threats may mean
wasting effort on threats of lower probability or impact than others. This can result not
only from unrealistic assumptions but also from: inexperience or lack of knowledge, fail-
ure to consider all possible threats (incompleteness), new vulnerabilities due to computer
system or network changes, or novel attacks. It is easy to instruct someone to defend
against all possible threats; anticipating the unanticipated is more difficult.

WHAT’S YOUR THREAT MODEL. Ideally, threat models are built using both prac-
tical experience and analytical reasoning, and continually adapted to inventive attackers
who exploit rapidly evolving software systems and technology. Perhaps the most impor-
tant security analysis question to always ask is: What’s your threat model? Getting the
threat model wrong—or getting only part of it right—allows many successful attacks in
the real world, despite significant defensive expenditures. We give a few more examples.

Example (Online trading fraud). A security engineer models attacks on an online
stock trading account. To stop an attacker from extracting money, she disables the ability
to directly remove cash from such accounts, and to transfer funds across accounts. The
following attack nonetheless succeeds. An attacker X breaks into a victim account by
obtaining its userid and password, and uses funds therein to bid up the price of a thinly
traded stock, which X has previously purchased at lower cost on his own account. Then
X sells his own shares of this stock, at this higher price. The victim account ends holding
the higher-priced shares, bought on the (manipulated) open market.

Example (Phishing one-time passwords). Some early online banks used one-time
passwords, sharing with each account holder a sheet containing a list of unique passwords
to be used once each from top to bottom, and crossed off upon use—to prevent repeated
use of passwords stolen (e.g., by phishing or malicious software). Such schemes have
nonetheless been defeated by tricking users to visit a fraudulent version of a bank web site,
and requesting entry of the next five listed passwords “to help resolve a system problem”.
The passwords entered are used once each on the real bank site, by the attacker. (Chapter
3 discusses one-time passwords and the related mechanism of passcode generators.)

Example (Bypassing perimeter defenses). In many enterprise environments, corpo-
rate gateways and firewalls selectively block incoming traffic to protect local networks
from the external Internet. This provides no protection from employees who, bypassing
such perimeter defenses, locally install software on their computers, or directly connect
by USB port memory tokens or smartphones for synchronization. A well-known attack
vector exploiting this is to sprinkle USB tokens (containing malicious software) in the
parking lot of a target company. Curious employees facilitate the rest of the attack.

DEBRIEFING. What went wrong in the above examples? The assumptions, the threat
model, or both, were incorrect. Invalid assumptions or a failure to accurately model the
operational environment can undermine what appears to be a solid model, despite convinc-
ing security arguments and mathematical proofs. One common trap is failing to validate
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assumptions: if a security proof relies on assumption A (e.g., hotel staff are honest), then
the logical correctness of the proof (no matter how elegant!) does not provide protection
if in the current hotel, A is false. A second is that a security model may truly provide a
100% guarantee that all attacks it considers are precluded by a given defense, while in
practice the modeled system is vulnerable to attacks that the model fails to consider.

ITERATIVE PROCESS: EVOLVING THREAT MODELS. As much art as science,
threat modeling is an iterative process, requiring continual adaptation to more complete
knowledge, new threats and changing conditions. As environments change, static threat
models become obsolete, failing to accurately reflect reality. For example, many Internet
security protocols are based on the original Internet threat model, which has two core
assumptions: (1) endpoints, e.g., client and server machine, are trustworthy; and (2) the
communications link is under attacker control (e.g., subject to eavesdropping, message
modification, message injection). This follows the historical cryptographer’s model for
securing data transmitted over unsecured channels in a hostile communications environ-
ment. However, assumption (1) often fails in today’s Internet where malware (Chapter 7)
has compromised large numbers of endpoint machines.

Example (Hard and soft keyloggers). Encrypting data between a client machine and
server does not protect against malicious software that intercepts keyboard input, and
relays it to other machines electronically. The hardware variation is a small, inexpensive
memory device plugged in between a keyboard cable and a computer, easily installed and
removed by anyone with occasional brief office access, such as cleaning staff.

1.6.2 Tying security policy back to real outcomes and security analysis

Returning to the big picture, we now pause to consider: How does “security” get tied back
to “security policy”, and how does this relate to threat models and security mechanisms?

OUTCOME SCENARIOS. Security defenses and mechanisms (means to implement
defenses) are designed and used to support security policies and services as in Fig. 1.1.
Consider the following outcomes relating defenses to security policies.

1. The defenses fail to properly support the policy; the security goal is not met.

2. The defenses succeed in preventing policy violations, and the policy is complete in the
sense of fully capturing an organization’s security requirements. The resulting system
is “secure” (both relative to the formal policy and real-world expectations).

3. The formal policy fails to fully capture actual security requirements. Here, even if
defenses properly support policy (attaining “security” relative to it), the common-sense
definition of security is not met, e.g., if an unanticipated simple attack still succeeds.

The third case motivates the following advice: Whenever ambiguous words like “secure”
and “security” are used, request that their intended meaning and context be clarified.

SECURITY ANALYSIS AND KEY QUESTIONS. Figure 1.10 provides overall con-
text for the iterative process of security design and analysis. It may proceed as follows.
Identify the valuable assets. Determine suitable forms of protection to counter identified
threats and vulnerabilities; adversary modeling and threat modeling help here. This helps
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Figure 1.10: Security analysis in context. Security analysis is relative to a threat model
defining in-scope attacks, and a security policy implying protection goals and authorized
actions. Security analysis aims to confirm that defenses in place address the identified
threats, and explains how. Compare to Figure 1.4’s software design lifecycle.

refine security requirements, shaping the security policy, which in turn shapes system de-
sign. Security mechanisms that can support the policy in the target environment are then
selected. As always, key questions help:

• What assets are valuable? (Alternatively: what are your protection goals?)

• What potential attacks put them at risk?

• How can potentially damaging actions be stopped or otherwise managed?

Options to mitigate future damage include not only attack prevention by countermeasures
that preclude (or reduce the likelihood of) attacks successfully exploiting vulnerabilities,
but also detection, real-time response, and recovery after the fact. Quick recovery can
reduce impact. Consequences can also be reduced by insurance (Section 1.3).

TESTING IS NECESSARILY INCOMPLETE. Once a system is designed and imple-
mented, how do we test that the protection measures work and that the system is “se-
cure”? (Here you should be asking: What definition of “secure” are you using?) How to
test whether security requirements have been met remains without a satisfactory answer.
Section 1.4 mentioned security analysis (often finding design flaws), third-party security
evaluation, and pen testing (often finding implementation and configuration flaws). Using
checklist ideas from threat modeling, testing can be done based on large collections of
common flaws, as a form of security-specific regression testing; specific, known attacks
can be compiled and attempted under controlled conditions, to see whether a system suc-
cessfully withstands them. This of course leaves unaddressed attacks not yet foreseen or
invented, and thus difficult to include in tests. Testing is also possible only for certain
classes of attacks. Assurance is thus incomplete, and often limited to well-defined scopes.

SECURITY IS UNOBSERVABLE. In regular software engineering, verification in-
volves testing specific features for the presence of correct outcomes given particular in-
puts. In contrast, security testing would ideally also confirm the absence of exploitable
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flaws. This may be called a negative goal, among other types of non-functional goals.
To repeat: we want not only to verify that expected functionality works as planned, but
also that exploitable artifacts are absent. This is not generally possible—aside from the
difficulty of proving properties of software at scale, the universe of potential exploits is
unknown. Traditional functional and feature testing cannot show the absence of problems;
this distinguishes security. Security guarantees may also evaporate due to a small detail
of one component being updated or reconfigured. A system’s security properties are thus
difficult to predict, measure, or see; we cannot observe security itself or demonstrate it,
albeit on observing undesirable outcomes we know it is missing. Sadly, not observing bad
outcomes does not imply security either—bad things that are unobservable could be la-
tent, or be occurring unnoticed. The security of a computer system is not a testable feature,
but rather is said (unhelpfully) to be emergent—resulting from the complex interaction of
elements that compose an entire system.

ASSURANCE IS DIFFICULT, PARTIAL. So then, what happens in practice? Evalua-
tion criteria are altered by experience, and even thorough security testing cannot provide
100% guarantees. In the end, we seek to iteratively improve security policies, and likewise
confidence that protections in place meet security policy and/or requirements. Assurance
of this results from sound design practices, testing for common flaws and known attacks
using available tools, formal modeling of components where suitable, ad hoc analysis, and
heavy reliance on experience. The best lessons often come from attacks and mistakes.

1.7 ‡Design principles for computer security

No complete checklist exists—neither short nor long—that system designers can follow
to guarantee that computer-based systems are “secure”. The reasons are many, including
large variations across technologies, environments, applications and requirements. Sec-
tion 1.5.3 discusses partial checklists, but independently, system designers are encouraged
to understand and follow a set of widely applicable security design principles. We collect
them here together in one place, and revisit them throughout the book with in-context
examples to aid understanding.

P1 SIMPLICITY-AND-NECESSITY: Keep designs as simple and small as possible. Re-
duce the number of components used, retaining only those that are essential; mini-
mize functionality, favor minimal installs, and disable unused functionality. Econ-
omy and frugality in design—especially for core security mechanisms—simplifies
analysis and reduces errors and oversights. Configure initial deployments to have
non-essential services and applications disabled by default (related to P2).

NOTE. This principle among others supports another broad principle: minimizing
attack surface. Every interface that accepts external input or exposes programmatic
functionality provides an entry point for an attacker to change or acquire a program
control path (e.g., install code or inject commands for execution), or alter data that

‡Design principles used throughout the book are collected in this section for unified reference. Readers
may prefer to skip this section and refer back for relevant principles as they arise later.
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might do likewise. The goal is to minimize the number of interfaces, simplify their
design (to reduce the number of ways they might be abused), minimize external ac-
cess to them, and restrict such access to authorized parties. Importantly, security
mechanisms themselves should not introduce new exploitable attack surfaces.

P2 SAFE-DEFAULTS: Use safe default settings (beware, defaults often go unchanged).
For access control, deny-by-default. Design services to be fail-safe, here meaning
that when they fail, they fail “closed” (e.g., denying access). As a method, use explicit
inclusion via allowlists (goodlists) of authorized entities with all others denied, rather
than exclusion via denylists (badlists) that would allow all those unlisted.

NOTE. A related idea, e.g., for data sent over real-time links, is to encrypt by
default using opportunistic encryption—encrypting session data whenever supported
by the receiving end. In contrast, default encryption is not generally recommended in
all cases for stored data, as the importance of confidentiality must be weighed against
the complexity of long-term key management and the risk of permanent loss of data
if encryption keys are lost; for session data, immediate decryption upon receipt at the
endpoint recovers cleartext.

P3 OPEN-DESIGN: Do not rely on secret designs, attacker ignorance, or security by ob-
scurity. Invite and encourage open review and analysis. For example, the Advanced
Encryption Standard was selected from a set of public candidates by open review;
undisclosed cryptographic algorithms are now widely discouraged. Without contra-
dicting this, leverage unpredictability where advantageous, as arbitrarily publicizing
tactical defense details is rarely beneficial (there is no gain in advertising to thieves
that you are on vacation, or posting house blueprints); and beware exposing error
messages or timing data that vary based on secret values, lest they leak the secrets.

NOTE. P3 is often paired with P9, and follows Kerckhoffs’ principle—a system’s
security should not rely on the secrecy of its design details.

P4 COMPLETE-MEDIATION: For each access to every object, and ideally immediately
before the access is to be granted, verify proper authority. Verifying authorization
requires authentication (corroboration of an identity), checking that the associated
principal is authorized, and checking that the request has integrity (it must not be
modified after being issued by the legitimate party—cf. P19).

P5 ISOLATED-COMPARTMENTS: Compartmentalize system components using strong
isolation structures (containers) that manage or prevent cross-component commu-
nication, information leakage, and control. This limits damage when failures occur,
and protects against escalation of privileges (Chapter 6); P6 and P7 have similar mo-
tivations. Restrict authorized cross-component communication to observable paths
with defined interfaces to aid mediation, screening, and use of chokepoints. Exam-
ples of containment means include: process and memory isolation, disk partitions,
virtualization, software guards, zones, gateways and firewalls.

NOTE. Sandbox is a term used for mechanisms offering some form of isolation.
P6 LEAST-PRIVILEGE: Allocate the fewest privileges needed for a task, and for the

shortest duration necessary. For example, retain superuser privileges (Chapter 5)
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only for actions requiring them; drop and reacquire privileges if needed later. Do not
use a Unix root account for tasks where regular user privileges suffice. This reduces
exposure, and limits damage from the unexpected. P6 complements P5 and P7.

NOTE. This principle is related to the military need-to-know principle—access to
sensitive information is granted only if essential to carrying out one’s official duties.

P7 MODULAR-DESIGN: Avoid monolithic designs that embed full privileges into large
single components; favor object-oriented and finer-grained designs that segregate
privileges (including address spaces) across smaller units or processes. P6 guides
more on the use of privilege frameworks, P7 more on designing base architectures.

NOTE. A related financial accounting principle is separation of duties, whereby co-
dependent tasks are assigned to independent parties so that an insider attack requires
collusion. This also differs from requiring multiple authorizations from distinct par-
ties (e.g., two keys or signatures to open a safety-deposit box or authorize large-
denomination cheques), a generalization of which is thresholding of privileges—
requiring k of t parties (2≤ k ≤ t) to authorize an action.

P8 SMALL-TRUSTED-BASES: Strive for small code size in components that must be
trusted, i.e., components on which a larger system strongly depends for security. For
example, high-assurance systems centralize critical security services in a minimal
core operating system microkernel (cf. Chapter 5 end notes), whose smaller size al-
lows efficient concentration of security analysis.

NOTE. A related minimize-secrets principle is: Secrets should be few in number.
Benefits include reducing management complexity. Cryptographic algorithms use a
different form of trust reduction, and separate mechanism from secret; note that a
secret key is changeable at far less cost than the cryptographic algorithm itself.

P9 TIME-TESTED-TOOLS: Rely wherever possible on time-tested, expert-built security
tools including protocols, cryptographic primitives and toolkits, rather than designing
and implementing your own. History shows that security design and implementation
is difficult to get right even for experts; thus amateurs are heavily discouraged (don’t
reinvent a weaker wheel). Confidence increases with the length of time mechanisms
and tools have survived under load (sometimes called soak testing).

NOTE. The underlying reasoning here is that a widely used, heavily scrutinized
mechanism is less likely to retain flaws than many independent, scantly reviewed im-
plementations (cf. P3). Thus using well-known crypto libraries (e.g., OpenSSL) is
encouraged. Less understood is an older least common mechanism principle: mini-
mize the number of mechanisms (shared variables, files, system utilities) shared by
two or more programs and depended on by all. It recognizes that interdependencies
increase risk; code diversity can reduce impacts of single flaws.

P10 LEAST-SURPRISE: Design mechanisms, and their user interfaces, to behave as users
expect. Align designs with users’ mental models of their protection goals, to reduce
user mistakes that compromise security. Especially where errors are irreversible (e.g.,
sending confidential data or secrets to outside parties), tailor to the experience of
target users; beware designs suited to experts but triggering mistakes by ordinary
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users. Simpler, easier-to-use (i.e., usable) mechanisms yield fewer surprises.

P11 USER-BUY-IN: Design security mechanisms that users are motivated to use rather
than bypass, and so that users’ path of least resistance is a safe path. Seek design
choices that illuminate benefits, improve user experience, and minimize inconve-
nience. Mechanisms viewed as time-consuming, inconvenient or without perceived
benefit risk non-compliance. Example: a subset of Google gmail users voluntarily
use a two-step authentication scheme, which augments basic passwords by one-time
passcodes sent to the user’s phone.

P12 SUFFICIENT-WORK-FACTOR: For configurable security mechanisms where the prob-
ability of attack success increases predictably with effort, tune the mechanism so that
the cost to defeat it (work factor) clearly exceeds the resources of anticipated classes
of adversaries. Thus use suitably strong defenses. Example 1: random cryptographic
keys should be sufficiently long to preclude being found by brute-force search (i.e.,
enumerative guessing attacks). Example 2: disallow user-chosen passwords that are
so weak that a feasible number of guesses yields a non-negligible chance of success.

P13 DEFENSE-IN-DEPTH: Build defenses in multiple layers backing each other up, forc-
ing attackers to defeat independent layers, thereby avoiding single points of failure. If
any layer relies on alternative defense segments, design each to be comparably strong
(“equal-height fences” for defence-in-breadth) and strengthen the weakest segment
first (smart attackers jump the lowest bar or break the weakest link). As a design as-
sumption, expect some defenses to fail on their own due to errors, and that attackers
will defeat others more easily than anticipated, or entirely bypass them.

P14 EVIDENCE-PRODUCTION: Record system activities through event logs, monitoring
tools, and other means to promote accountability, help understand and recover from
system failures, and support intrusion detection tools. Example: robust audit trails
support forensic analysis tools, to help reconstruct events related to intrusions and
criminal activities. In many cases, mechanisms that facilitate detection and evidence
production may be more cost-effective than outright attack prevention.

P15 DATATYPE-VALIDATION: Verify that all received data meets expected (assumed)
properties or data types. If data input is expected, ensure that it cannot be processed
as code by subsequent components. This may be part of data canonicalization (for
example, of fragmented packets or encoded characters in URLs), or input sanitization
to address code injection and command injection attacks (Chapter 9).

P16 REMNANT-REMOVAL: On termination of a session or program, remove all traces of
sensitive data associated with a task, including secret keys and any remnants recov-
erable from secondary storage, RAM and cache memory. Note that common file
deletion removes directory entries, whereas secure deletion aims to make file content
unrecoverable even by forensic tools. Related to remnant removal, beware that while
a process is active, information may leak elsewhere by side channels.

P17 TRUST-ANCHOR-JUSTIFICATION: Ensure or justify confidence placed in any base
point of assumed trust, especially when mechanisms iteratively or transitively extend
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trust from a base point (such as a trust anchor in a browser certificate chain, Chapter
8). More generally, verify trust assumptions where possible, with extra diligence at
registration, initialization, software installation, and starting points in the lifecycle of
a software application, security key or credential.

P18 INDEPENDENT-CONFIRMATION: Use simple, independent (e.g., local device) cross-
checks to increase confidence in code or data, especially if it may arrive from outside
domains or over untrusted channels. Example: integrity of downloaded software ap-
plications or public keys can be confirmed (Chapter 8) by comparing a locally com-
puted cryptographic hash (Chapter 2) of the item to a “known-good” hash obtained
over an independent channel (voice call, text message, widely trusted site).

P19 REQUEST-RESPONSE-INTEGRITY: Verify that responses match requests in name res-
olution and other distributed protocols. Their design should include cryptographic
integrity checks that bind steps to each other within a given transaction or protocol
run to detect unrelated or substituted responses; beware protocols lacking authenti-
cation. Example: a certificate request specifying a unique subject name or domain
expects in response a certificate for that subject; this field in the response certificate
should be cross-checked against the request.

P20 RELUCTANT-ALLOCATION: Be reluctant to allocate resources or expend effort in
interactions with unauthenticated, external agents. For services open to all parties,
design to mitigate intentional resource consumption. Place a higher burden of effort
on agents that initiate an interaction. (A party initiating a phone call should not be
the one to demand: Who are you? When possible, authenticate. Related: processes
should beware abuse as a conduit extending their privileges to unverified agents.)

NOTE. P20 largely aims to avoid denial of service attacks (Chapter 11). P3 also
recommends reluctance, in that case to releasing system data useful to attackers.

We also include two higher-level principles and a maxim.

HP1 SECURITY-BY-DESIGN: Build security in, starting at the initial design stage of a
development cycle, since secure design often requires core architectural support ab-
sent if security is a late-stage add-on. Explicitly state the design goals of security
mechanisms and what they are not designed to do, since it is impossible to evaluate
effectiveness without knowing goals. In design and analysis documents, explicitly
state all security-related assumptions, especially related to trust and trusted parties
(supporting P17); note that a security policy itself might not specify assumptions.

HP2 DESIGN-FOR-EVOLUTION: Design base architectures, mechanisms, and protocols
to support evolution, including algorithm agility for graceful upgrades of crypto
algorithms (e.g., encryption, hashing) with minimal impact on related components.
Support automated secure software update where possible. Regularly re-evaluate
the effectiveness of security mechanisms, in light of evolving threats, technology,
and architectures; be ready to update designs and products as needed.

VERIFY FIRST. The diplomatic maxim “trust but verify” suggests that given assertions
by foreign diplomats whom you don’t actually trust, one should feign trust while silently
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cross-checking for yourself. In computer security, the rule is: verify first (before trust-
ing). Design principles related to this idea include: COMPLETE-MEDIATION (P4), DATA-
TYPE-VALIDATION (P15), TRUST-ANCHOR-JUSTIFICATION (P17), and INDEPENDENT-
CONFIRMATION (P18).

1.8 ‡Why computer security is hard

Many of today’s fundamental problems in computer security remain from decades ago,
despite huge changes in computing hardware, software, applications and environments.
For example, the first large-scale Internet security incident attracting widespread public
attention was the 1988 Internet worm (Chapter 7). Code Red and related computer worms
of 2001-2003 used remarkably similar vectors to spread, but had larger impact due to the
growth in the Internet user population. This highlights both the value of learning general
computer security principles—solid principles remain true over time—and the difficulty
in applying these to improve real-world security, due to various challenging aspects of
computer security. We list a number of these aspects here, for context and discussion:

1. intelligent, adaptive adversary: while most science relies on nature not being capri-
cious, computer security faces an intelligent, active adversary who learns and adapts,
and is often economically motivated.

2. no rulebook: attackers are not bound to any rules of play, while defenders typically
follow protocol conventions, interface specifications, standards and customs.

3. defender-attacker asymmetry: attackers need find only one weak link to exploit, while
defenders must defend all possible attack points.

4. scale of attack: the Internet enables attacks of great scale at little cost—electronic
communications are easily reproduced and amplified, with increasing bandwidth and
computing power over time.

5. universal connectivity: growing numbers of Internet devices with any-to-any packet
transmission abet geographically distant attackers (via low traceability/physical risk).

6. pace of technology evolution: rapid technical innovation means continuous churn in
hardware devices and software systems, continuous software upgrades and patches.

7. software complexity: the size and complexity of modern software platforms continu-
ously grows, as does a vast universe of application software. Software flaws may also
grow in number more than linearly with number of lines of code.

8. developer training and tools: many software developers have little or no security
training; automated tools to improve software security are difficult to build and use.

9. interoperability and backwards compatibility: interoperability requirements across
diverse hardware-software and legacy systems delays and complicates deploying se-
curity upgrades, resulting in ongoing vulnerabilities even if updates are available.

‡The remainder of this book helps us understand many of the aspects listed in this section. While given
here, we encourage readers to return to this list as a summary, on completing the final chapter.
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10. market economics and stakeholders: market forces often hinder allocations that im-
prove security, e.g., stakeholders in a position to improve security, or who would bear
the cost of deploying improvements, may not be those who would gain benefit.

11. features beat security: while it is well accepted that complexity is the enemy of secu-
rity (cf. P1), little market exists for simpler products with reduced functionality.

12. low cost beats quality: low-cost low-security wins in “market for lemons” scenar-
ios where to buyers, high-quality software is indistinguishable from low (other than
costing more); and when software sold has no liability for consequential damages.

13. missing context of danger and losses: cyberspace lacks real-world context cues and
danger signals to guide user behavior, and consequences of security breaches are often
not immediately visible nor linkable to the cause (i.e., the breach itself).

14. managing secrets is difficult: core security mechanisms often rely on secrets (e.g.,
crypto keys and passwords), whose proper management is notoriously difficult and
costly, due to the nature of software systems and human factors.

15. user non-compliance (human factors): users bypass or undermine computer security
mechanisms that impose inconveniences without visible direct benefits (in contrast:
physical door locks are also inconvenient, but benefits are understood).

16. error-inducing design (human factors): it is hard to design security mechanisms
whose interfaces are intuitive to learn, distinguishable from interfaces presented by
attackers, induce the desired human actions, and resist social engineering.

17. non-expert users (human factors): whereas users of early computers were technical
experts or given specialized training under enterprise policies, today many are non-
experts without formal training or any technical computer background.

18. security not designed in: security was not an original design goal of the Internet
or computers in general, and retro-fitting it as an add-on feature is costly and often
impossible without major redesign (see principle HP1).

19. introducing new exposures: the deployment of a protection mechanism may itself
introduce new vulnerabilities or attack vectors.

20. government obstacles: government desire for access to data and communications
(e.g., to monitor criminals, or spy on citizens and other countries), and resulting poli-
cies, hinders sound protection practices such as strong encryption by default.

We end by noting that this is but a partial list! Rather than being depressed by this, as op-
timists we see a great opportunity—in the many difficulties that complicate computer se-
curity, and in technology trends suggesting challenges ahead as critical dependence on the
Internet and its underlying software deepens. Both emphasize the importance of under-
standing what can go wrong when we combine people, computing and communications
devices, and software-hardware systems.

We use computers and mobile devices every day to work, communicate, gather in-
formation, make purchases, and plan travel. Our cars rely on software systems—as do
our airplanes. (Does this worry you? What if the software is wirelessly updated, and the
source of updates is not properly authenticated?) The business world comes to a standstill
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when Internet service is disrupted. Our critical infrastructure, from power plants and elec-
tricity grids to water supply and financial systems, is dependent on computer hardware,
software and the Internet. Implicitly we expect, and need, security and dependability.

Perhaps the strongest motivation for individual students to learn computer security
(and for parents and friends to encourage them to do so) is this: security expertise may
be today’s very best job-for-life ticket, as well as tomorrow’s. It is highly unlikely that
software and the Internet itself will disappear, and just as unlikely that computer security
problems will disappear. But beyond employment for a lucky subset of the population,
having a more reliable, trustworthy Internet is in the best interest of society as a whole.
The more we understand about the security of computers and the Internet, the safer we
can make them, and thereby contribute to a better world.

1.9 ‡End notes and further reading

Many formal security models, including for specific policies related to confidentiality, in-
tegrity, and access control, are discussed in the research literature and older books—see
for example Pfleeger [15]. Gollmann [7, Chapter 13] discusses formal security evalua-
tion. Rescorla [16, page 1] mentions the Internet threat model. Attack trees are related
to threat trees [2] and predated by 1960s-era fault tree analysis. Related Kuang decision
trees arising from Baldwin [5] influenced later work on vulnerability assessment (cf. [4,
page 143]). MITRE maintains a Common Attack Pattern Enumeration and Classification
(CAPEC), an extensive list (dictionary and classification) of security attacks that aims to
aid defenders; such collections, often with supporting information including prototype at-
tack code, may be called attack libraries. Shostack [19] gives an authoritative treatment
of threat modeling (including STRIDE); see also Howard [8]. Lowry [11] discusses ad-
versary modeling. Akerlof [1] explains the “market for lemons” and what happens when
buyers cannot distinguish low-quality products from (more costly) high-quality products.

Additional barriers related to risk assessment and security metrics are noted by Jaquith
[9, pp. 31-36] and Parker [14]. As examples, risk assessment equations can be highly sen-
sitive to changes in often arbitrary modeling assumptions; outliers can dominate analysis
when modeling rare, high-impact events; and risk estimates are complicated by software
complexity and human factors issues. For qualitative risk assessment, see risk assess-
ment standards and guidelines (Table 1.1 is based on NIST SP 800-30 [13]); textbooks
giving examples include Basin [6, §8.4] and Stallings [21, §14.5]. Core security design
principles from 1975 by Saltzer and Schroeder [18] have been periodically revisited, for
example, by Saltzer and Kaashoek [17, Ch. 11] and Smith [20]; see also Basin [6] for
examples related to long-standing principles.

Our definition of attack herein is somewhat narrow. For broader discussion of rela-
tionships between dependability, security and trustworthiness, and definitions of faults
(including malicious faults), failures and errors, see Avizienis [3].

‡The double-dagger symbol denotes sections that may be skipped on first reading, or by instructors using
the book for time-constrained courses.
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